A. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z) | B. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
C. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z) | D. | [kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z) |
分析 利用二倍角公式以及兩角和與差的三角函數(shù),通過正弦函數(shù)的單調(diào)性求解即可.
解答 解:函數(shù)y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx=-sin2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$
=-$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x
=sin(2x+$\frac{π}{6}$),
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{6}$$≤2kπ+\frac{π}{2}$,k∈Z.
解得:k$π-\frac{π}{3}$≤x≤k$π+\frac{π}{6}$,k∈Z.
∴函數(shù)y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx的單調(diào)増區(qū)間為:[kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z).
故選:D.
點(diǎn)評(píng) 本題考查三角函數(shù)的恒等變換的應(yīng)用,正弦函數(shù)的單調(diào)性以及兩角和與差的三角函數(shù)的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54種 | B. | 48種 | C. | 42種 | D. | 36種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com