12.(Ⅰ)用綜合法證明:a+b+c≥$\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$(a,b,c均為正實(shí)數(shù));
(Ⅱ)已知:x∈R,a=x2-1,b=4x+5,求證:a,b中至少有一個(gè)不小于0.

分析 (Ⅰ)根據(jù)2(a+b+c)-2($\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$)=$\sqrt{a}$-$\sqrt$)2+( $\sqrt$-$\sqrt{c}$)2+( $\sqrt{c}$-$\sqrt{a}$)2≥0,可得2(a+b+c)≥2( $\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$),從而證得結(jié)論.
(Ⅱ)用反證法,假設(shè) a<0,b<0,則a+b<0,又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,命題得證.

解答 證明:(Ⅰ)由于2(a+b+c)-2($\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$)
=($\sqrt{a}$-$\sqrt$)2+( $\sqrt$-$\sqrt{c}$)2+($\sqrt{c}$-$\sqrt{a}$)2≥0,
∴2(a+b+c)≥2($\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$)
∴a+b+c≥$\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$.
(Ⅱ)證明:假設(shè)a,b都小于0,即a<0,b<0,則a+b<0.
又a+b=x2-1+4x+5=x2+4x+4=(x+2)2≥0,
這與假設(shè)所得a+b<0矛盾,故假設(shè)不成立.
∴a,b中至少有一個(gè)不小于0.

點(diǎn)評(píng) 本題主要考查用綜合法(由因?qū)Ч┳C明不等式、分析法證(執(zhí)果索因)明不等式,用反證法證明數(shù)學(xué)命題,推出矛盾,是解題的關(guān)鍵和難點(diǎn).屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角θ的終邊經(jīng)過點(diǎn)P(x,3)(x<0),且cosθ=$\frac{x}{4}$,則x的值為( 。
A.$\sqrt{7}$B.5C.-5D.-$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知z=|$\frac{3+4i}{4-3i}$|+2i,則|z|$\overline{z}$+z|$\overline{z}$|=$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙兩人做定點(diǎn)投籃游戲,己知甲每次投籃命中率均為p,乙每次投籃命中的概率均為$\frac{1}{2}$,甲投籃3次均未命中的概率為$\frac{1}{27}$,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)m∈R,向量$\overrightarrow{a}$=(m+1,3),$\overrightarrow$=(2,-m),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{26}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx的單調(diào)増區(qū)間為( 。
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算(lg3+2lg2-lg10)÷lg1.2的結(jié)果為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知偶函數(shù)f(x)滿足f(x)=f(π-x),當(dāng)x∈[-$\frac{π}{2}$,0]時(shí),f(x)=2x-cosx,則函數(shù)f(x)在區(qū)間[-π,π]內(nèi)的零點(diǎn)個(gè)數(shù)為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.隨著移動(dòng)互聯(lián)網(wǎng)時(shí)代的到來,手機(jī)的使用非常普遍,“低頭族”隨處可見.某校為了解家長(zhǎng)和教師對(duì)學(xué)生帶手機(jī)進(jìn)校園的態(tài)度,隨機(jī)調(diào)查了100位家長(zhǎng)和教師,得到情況如下表:
教師家長(zhǎng)
反對(duì)4020
支持2020
(1)是否有95%以上的把握認(rèn)為“帶手機(jī)進(jìn)校園與身份有關(guān)”,并說明理由;
(2)把以上頻率當(dāng)概率,隨機(jī)抽取3位教師,記其中反對(duì)學(xué)生帶手機(jī)進(jìn)校園的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

同步練習(xí)冊(cè)答案