6.若一個(gè)角兩邊和另一個(gè)角兩邊分別平行,一個(gè)角為45°,則另一個(gè)為45°或135°.

分析 根據(jù)平行角定理,若一個(gè)角兩邊和另一個(gè)角兩邊分別平行,則這兩個(gè)角相等或互補(bǔ),可得答案.

解答 解:若一個(gè)角兩邊和另一個(gè)角兩邊分別平行,
則這兩個(gè)角相等或互補(bǔ),
由一個(gè)角為45°,則另一個(gè)為45°或135°,
故答案為:45°或135°

點(diǎn)評 本題考查的知識點(diǎn)是平行角定理,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計(jì)算$\frac{cos10°-\sqrt{3}cos(-100°)}{\sqrt{1-sin10°}}$=$\sqrt{2}$(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4,$\overrightarrow$•($\overrightarrow{a}$-$\overrightarrow$)=0,若|λ$\overrightarrow{a}$-$\overrightarrow$|的最小值為2(λ∈R),則$\overrightarrow{a}$•$\overrightarrow$=(  )
A.0B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=2ln$\frac{3}{2}$、b=log2$\frac{1}{3}$、c=($\frac{1}{2}$)-0.3,則( 。
A.c<a<bB.a<c<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:f(x+1)=$\sqrt{f(x){-f}^{2}(x)}+\frac{1}{2}$,數(shù)列{an}滿足an=f2(n)-f(n),n∈N*,若其前n項(xiàng)和為-$\frac{35}{16}$,則n的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知t為實(shí)數(shù),函數(shù)f(x)=2loga(2x-t-2),g(x)=logax,其中0<a<1.
(1)若函數(shù)f(x)=g(ax+1)-kx是偶函數(shù),求實(shí)數(shù)k的值;
(2)當(dāng)x∈[1,4]時(shí),f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,若2B=A+C,求tanA+tanC-$\sqrt{3}$tanAtanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,E上一點(diǎn)P到右焦點(diǎn)距離的最小值為1.
(1)求橢圓E的方程;
(2)過點(diǎn)(0,2)且傾斜角為60°的直線交橢圓E于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=log2(x+1),則f(1-$\sqrt{2}$)=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案