10.已知雙曲線mx2-y2=1的漸近線方程為y=±3x,則m=(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.3D.9

分析 根據(jù)雙曲線的方程求出雙曲線的漸近線方程,建立方程關(guān)系進(jìn)行求解即可.

解答 解:由雙曲線的方程知m>0,
由mx2-y2=0得y=±$\sqrt{m}$x,
∵雙曲線的漸進(jìn)線方程為y=±3x,
∴$\sqrt{m}$=3,得m=9,
故選:D

點(diǎn)評(píng) 本題主要考查雙曲線漸近線的求解,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知三棱錐P-ABC中,PA⊥AC,PC⊥BC,E為PB中點(diǎn),D為AB的中點(diǎn),且△ABE為正三角形.
(1)求證:BC⊥平面PAC;
(2)請(qǐng)作出點(diǎn)B在平面DEC上的射影H,并說(shuō)明理由.若$BC=3,BH=\frac{12}{5}$,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=ex,若存在t∈R,對(duì)任意x∈[1,m](m>1,m∈N),都有f(x+t)≤ex,則m的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2acosθ(a>0),且曲線C與直線l有且僅有一個(gè)公共點(diǎn).
(Ⅰ)求a;
(Ⅱ)設(shè)A、B為曲線C上的兩點(diǎn),且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某金匠以黃金為原材料加工一種飾品,由于加工難度大,該金匠平均每加工5個(gè)飾品中有4個(gè)成品和1個(gè)廢品,每個(gè)成品可獲利3萬(wàn)元,每個(gè)廢品損失1萬(wàn)元,假設(shè)該金匠加工每件飾品互不影響.
(Ⅰ)若該金匠加工4個(gè)飾品,求其中廢品的數(shù)量不超過(guò)1的概率?
(Ⅱ)若該金匠加工了3個(gè)飾品,求他所獲利潤(rùn)的數(shù)學(xué)期望.(兩小問(wèn)的計(jì)算結(jié)果都用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,a1=b1=1,a3b2=14,a3-b2=5.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某儀器經(jīng)過(guò)檢驗(yàn)合格才能出廠,初檢合格率為$\frac{3}{4}$:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為$\frac{4}{5}$.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目生產(chǎn)成本檢驗(yàn)費(fèi)/次調(diào)試費(fèi)出廠價(jià)
金額(元)10001002003000
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤(rùn)為1600元的概率(注:利潤(rùn)=出廠價(jià)-生產(chǎn)成本-檢驗(yàn)費(fèi)-調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記X為生產(chǎn)兩臺(tái)儀器所獲得的利潤(rùn),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義在R內(nèi)的函數(shù)f(x)滿足f(x+4)=f(x),當(dāng)x∈[-1,3]時(shí),$f(x)=\left\{\begin{array}{l}t({1-|x|}),x∈[{-1,1}]\\ \sqrt{1-{{({x-2})}^3}},x∈({1,3}]\end{array}\right.$,則當(dāng)$t∈[{\frac{9}{5},2}]$時(shí),方程5f(x)-x=0的不等實(shí)數(shù)根的個(gè)數(shù)是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=lnx.
(1)證明:當(dāng)x>1時(shí),$x+1-\frac{{2({x-1})}}{f(x)}>0$;
(2)若函數(shù)g(x)=f(x)+x-ax2有兩個(gè)零點(diǎn)x1,x2(x1<x2,a>0),證明:$g'({\frac{{{x_1}+2{x_2}}}{3}})<1-a$.

查看答案和解析>>

同步練習(xí)冊(cè)答案