【題目】如圖,A,BC為函數(shù)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t、t+2t+4,其中t1,

.

1)設(shè)△ABC的面積為S,求Sft);

2)判斷函數(shù)Sft)的單調(diào)性;

3)求Sft)的最大值.

【答案】(1) S=

(2) Sft是是減函數(shù)

(3) 最大值是f (1)=

【解析】

解:(1A、B、C三點(diǎn)坐標(biāo)分別為(tt),(t+2,t+2)),(t+4,t+4)),由圖形,當(dāng)妨令三點(diǎn)A,B,Cx軸上的垂足為EF,N,則△ABC的面積為

SABCS梯形ABFE+S梯形BCNFS梯形ACNE

=﹣[tt+2][t+2t+4))]+2[tt+4))]

[tt+4t+2]

即△ABC的面積為Sft t1

2ft t1)是復(fù)合函數(shù),其外層是一個(gè)遞增的函數(shù),t1時(shí),內(nèi)層是一個(gè)遞減的函數(shù),故復(fù)合函數(shù)是一個(gè)減函數(shù),

3)由(2)的結(jié)論知,函數(shù)在t1時(shí)取到最大值,故三角形面積的最大值是

Sf1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,,則,

但是,其中等號成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請你給出正確的答案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程](10分

在極坐標(biāo)系中,圓C的極坐標(biāo)方程為,若以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系.

(1)求圓C的一個(gè)參數(shù)方程;

(2)在平面直角坐標(biāo)系中,是圓C上的動點(diǎn),試求的最大值,并求出此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①對于獨(dú)立性檢驗(yàn),的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團(tuán)委欲用分層抽樣的方法抽取18名學(xué)生進(jìn)行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢,其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開拓國際市場,基本形成了市場規(guī)模;自2014年1月以來的第個(gè)月(2014年1月為第一個(gè)月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、(單位:萬件),依據(jù)銷售統(tǒng)計(jì)數(shù)據(jù)發(fā)現(xiàn)形成如下營銷趨勢:,(其中為常數(shù),),已知萬件,萬件,萬件.

(1)求,的值,并寫出滿足的關(guān)系式;

(2)證明:逐月遞增且控制在2萬件內(nèi);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的角所對的邊份別為,且

1求角的大小;

2,求的周長的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校辦工廠請了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時(shí)數(shù)之比為10:7,問30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請利用二分法的知識解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三棱錐中,平面平面,是邊長為4,的正三角形,是頂角 的等腰三角形,點(diǎn)上的一動點(diǎn).

(1)當(dāng)時(shí),求證:;

(2)當(dāng)直線與平面所成角為時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxR上的奇函數(shù).

1)若x[,],求fx)的取值范圍

2)若對任意的x1[1,,總存在x2[,]使得mlog2(﹣6x12+24x116)﹣fx20m0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案