13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,右焦點(diǎn)為F,若以A為圓心,過點(diǎn)F的圓與直線3x-4y=0相切,則雙曲線的離心率為( 。
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{8}{5}$D.2

分析 求出AF和A到直線3x-4y=0的距離d,令A(yù)F=d解出a,c的關(guān)系,得出離心率.

解答 解:A(a,0),F(xiàn)(c,0),
∴圓A的半徑r=c-a,
∵圓A與直線3x-4y=0相切,
∴$\frac{3a}{5}$=c-a,即c=$\frac{8}{5}a$.
∴e=$\frac{c}{a}$=$\frac{8}{5}$.
故選:C.

點(diǎn)評 本題考查了雙曲線的性質(zhì),直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(x+a)ln(x+a),g(x)=-$\frac{a}{2}{x^2}$+ax.
(1)函數(shù)h(x)=f(ex-a)+g'(ex),x∈[-1,1],求函數(shù)h(x)的最小值;
(2)對任意x∈[2,+∞),都有f(x-a-1)-g(x)≤0成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx+ax+b在(1,f(1))處的切線為2x-2y-1=0.
(1)求f(x)的單調(diào)區(qū)間與最小值;
(2)求證:${e^x}+lnx>cosx+\frac{sinx-1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在面積為1的正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)p,則△PAB的面積大于等于$\frac{1}{3}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知3cos2θ=tanθ+3,且θ≠kπ(k∈Z),則sin[2(π-θ)]等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的區(qū)域,Ω2是集合{(x,y)|y≤|x|}所表示的區(qū)域,向區(qū)域Ω1內(nèi)隨機(jī)的投一個點(diǎn),則該點(diǎn)落在區(qū)域Ω2內(nèi)的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)m=4-xi,n=3+2i,若復(fù)數(shù)$\frac{n}{m}$∈R,則實(shí)數(shù)x的值為(  )
A.-6B.6C.$\frac{8}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正方體ABCD-A1B1C1D1的棱和六個面的對角線共24條,其中與體對角線AC1垂直的有6條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{2^x}-1|,x≤1\\|{log_{2017}}(x-1)|,x>1\end{array}$,若方程f(x)=t有四個不同的實(shí)數(shù)根a,b,c,d,且a<b<c<d,則a+b+$\frac{1}{c}+\frac{1}85yy602$的取值范圍為( 。
A.(-∞,1]B.[1,2017)C.(-∞,1)D.(1,2017)

查看答案和解析>>

同步練習(xí)冊答案