分析 利用函數的奇偶性整理不等式為loga(x+1)>loga(1-x),對底數a分類討論得出x的范圍.
解答 解:f(x)-g(x)>0,即 loga(x+1)-loga(1-x)>0,loga(x+1)>loga(1-x).
當0<a<1時,上述不等式等價于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1<1-x}\end{array}\right.$,解得-1<x<0;
當a>1時,原不等式等價于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1.
綜上所述,當0<a<1時,原不等式的解集為{x|-1<x<0};
當a>1時,原不等式的解集為{x|0<x<1}.
故答案為:當0<a<1時,原不等式的解集為{x|-1<x<0};a>1時,原不等式的解集為{x|0<x<1}.
點評 本題考查不等式的解法,對底數a的分類討論是關鍵.
科目:高中數學 來源: 題型:選擇題
A. | [-1,1] | B. | [1,2] | C. | [$\sqrt{2}$,4] | D. | [$\sqrt{2}$,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com