【題目】已知直線l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四個結論:
直線l經過定點(0,-2);
②若直線l在x軸和y軸上的截距相等,則 =1;
當 ∈[1, 4+3 ]時,直線l的傾斜角q∈[120°,135°];
④當 ∈(0,+∞)時,直線l與兩坐標軸圍成的三角形面積的最小值為 .
其中正確結論的是(填上你認為正確的所有序號).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知過點 的光線,經 軸上一點 反射后的射線 過點 .
(1)求點 的坐標;
(2)若圓 過點 且與 軸相切于點 ,求圓 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標準方程是( )
A.(x-2)2+(y-1)2=1
B.(x-2)2+(y-3)2=1
C.(x-3)2+(y-2)2=1
D.(x-3)2+(y-1)2=1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣lnx.
(1)求函數(shù)y=f(x)的單調區(qū)間;
(2)設g(x)=x﹣t,若函數(shù)h(x)=g(x)﹣f(x)在[ ,e]上(這里e≈2.718)恰有兩個不同的零點,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共12分)
如圖,邊長為3的正方形所在平面與等腰直角三角形所在平面互相垂直, ,且, .
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為 的正方形,E為PC的中點,PB=PD.平面PBD⊥平面ABCD.
(1)證明:PA∥平面EDB.
(2)求三棱錐E﹣BCD與三棱錐P﹣ABD的體積比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com