分析 (Ⅰ)根據(jù)橢圓的離心率公式及三角形的面積公式,即可求得a和b的值,即可求得橢圓方程;
(Ⅱ)由P(x0,y0),則$\frac{{x}_{0}^{2}}{2}+{y}_{0}^{2}=1$,(0<x0<$\sqrt{2}$),利用兩點(diǎn)之間的距離公式丨PF丨=$\frac{\sqrt{2}}{2}$(2-x0),丨PM丨=$\sqrt{丨OP{丨}^{2}-1}$=$\frac{\sqrt{2}}{2}$x0,即可求證|PF|+|PM|為定值.
解答 解:(Ⅰ)由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,則a=2c,①△AOF的面積S=$\frac{1}{2}$×bc=$\frac{1}{2}$,則bc=1,②
a2=b2+c2,③
解得:a2=2,b2=1,c2=1,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)證明:以橢圓的短軸為直徑的圓的方程:x2+y2=1,右焦點(diǎn)為F(1,0),
設(shè)P(x0,y0),則$\frac{{x}_{0}^{2}}{2}+{y}_{0}^{2}=1$,
(0<x0<$\sqrt{2}$),
丨PF丨=$\sqrt{({x}_{0}-1)^{2}+{y}_{0}^{2}}$
=$\sqrt{{x}_{0}^{2}-2{x}_{0}+1+1-\frac{{x}_{0}^{2}}{2}}$=$\sqrt{\frac{1}{2}{x}_{0}^{2}-2{x}_{0}+2}$
=$\sqrt{\frac{1}{2}({x}_{0}-2)^{2}}$=$\frac{\sqrt{2}}{2}$(2-x0),
又l與圓:x2+y2=1相切于M,
丨PM丨=$\sqrt{丨OP{丨}^{2}-1}$=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}-1}$=$\sqrt{{x}_{0}^{2}-\frac{{x}_{0}^{2}}{2}}$=$\sqrt{\frac{{x}_{0}^{2}}{2}}$=$\frac{\sqrt{2}}{2}$x0,
則|PF|+|PM|=$\frac{\sqrt{2}}{2}$(2-x0)+$\frac{\sqrt{2}}{2}$x0=$\sqrt{2}$.
∴|PF|+|PM|為定值$\sqrt{2}$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線(xiàn)與橢圓的位置關(guān)系,考查韋達(dá)定理,兩點(diǎn)之間的距離公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=2x | B. | $f(x)=\frac{3}{8}x$ | C. | f(x)=log2x | D. | f(x)=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 114 | B. | 117 | C. | 111 | D. | 108 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com