11.f(x)=$\frac{1}{2}$mx2+lnx-2x在定義域內(nèi)單調(diào)遞增,則實數(shù)m取值范圍為[1,+∞).

分析 利用導函數(shù)的符號,列出不等式求解即可.

解答 解:f(x)=$\frac{1}{2}$mx2+lnx-2x的定義域為:x>0.
可得:f′(x)=mx+$\frac{1}{x}$-2,
f(x)=$\frac{1}{2}$mx2+lnx-2x在定義域內(nèi)單調(diào)遞增,
所以:mx+$\frac{1}{x}$-2≥0,m≥$\frac{2}{x}-\frac{1}{{x}^{2}}$=1-($\frac{1}{x}-1$)2
因為1-($\frac{1}{x}-1$)2≤1,
則實數(shù)m取值范圍為:[1,+∞).
故答案為:[1,+∞).

點評 本題考查函數(shù)的單調(diào)性的應用,函數(shù)的導數(shù)以及二次函數(shù)的最值問題,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.(文科做)設全集是實數(shù)集R,A={x|x2+x-6≤0},B={x|x2+a<0}.
(1)當a=-4時,求A∩B和A∪B;
(2)若A∩B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:y2=2px的準線為x=-$\frac{1}{2}$,過點(3,0)的直線l與拋物線C交于A,B兩點,過線段AB的中點M作y軸的垂線交拋物線C于點N,直線AN,BN分別與拋物線的準線交于P,Q兩點.
(1)求拋物線C的方程;
(2)求△NAB和△NPQ的面積之比$\frac{{S}_{△NAB}}{{S}_{△NPQ}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知Sn為等比數(shù)列{an}的前n項和,公比q=2,S99=154,則a3+a6+a9+…+a99=88.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.乒乓球隊的8名隊員中有3名主力隊員,要派5名隊員參加團體比賽,其中的3名主力隊員安排在第一、第三、第五位置,其余5名隊員選2名安排在第二、第四位置,那么不同的出場安排共有120種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某學校高一、高二、高三年級的學生人數(shù)之比為2:3:5,現(xiàn)用分層抽樣的方法從該校高中三個年級的學生中抽取容量為150的樣本,則應從高二年級抽取45名學生.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若命題p的逆命題是q,否命題是r,則命題q是命題r的( 。
A.逆命題B.否命題C.逆否命題D.不等價命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.將編號為1、2、3、4的四個小球隨機的放入編號為1、2、3、4的四個紙箱中,每個紙箱有且只有一個小球,稱此為一輪“放球”.設一輪“放球”后編號為i(i=1,2,3,4)的紙箱放入的   小球編號為ai,定義吻合度誤差為X=|1-a1|+|2-a2|+|3-a3|+|4-a4|
(1)寫出吻合度誤差X的可能值集合;
(2)假設a1,a2,a3,a4等可能地為1,2,3,4的各種排列,求吻合度誤差X的分布列;
(3)某人連續(xù)進行了四輪“放球”,若都滿足3<X<7,試按(Ⅱ)中的結果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨立).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.a(chǎn)>0,b>0且$\frac{1}{a}+\frac{1}=\sqrt{ab}$
(1)求證a4+b4≥8.
(2)是否存在a,b使得2a+b=4?

查看答案和解析>>

同步練習冊答案