分析 利用導函數(shù)的符號,列出不等式求解即可.
解答 解:f(x)=$\frac{1}{2}$mx2+lnx-2x的定義域為:x>0.
可得:f′(x)=mx+$\frac{1}{x}$-2,
f(x)=$\frac{1}{2}$mx2+lnx-2x在定義域內(nèi)單調(diào)遞增,
所以:mx+$\frac{1}{x}$-2≥0,m≥$\frac{2}{x}-\frac{1}{{x}^{2}}$=1-($\frac{1}{x}-1$)2.
因為1-($\frac{1}{x}-1$)2≤1,
則實數(shù)m取值范圍為:[1,+∞).
故答案為:[1,+∞).
點評 本題考查函數(shù)的單調(diào)性的應用,函數(shù)的導數(shù)以及二次函數(shù)的最值問題,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com