2.已知雙曲線C:$\frac{x^2}{{a{\;}^2}}-\frac{y^2}{{b{\;}^2}}$=1的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),以A為圓心的圓與雙曲線C的某一條漸近線交于兩點(diǎn)P,Q,若∠PAQ=$\frac{π}{3}$且$\overrightarrow{OQ}=5\overrightarrow{OP}$,則雙曲線C的離心率為( 。
A.2B.$\frac{{\sqrt{21}}}{3}$C.$\frac{{\sqrt{7}}}{2}$D.3

分析 確定△QAP為等邊三角形,設(shè)AQ=2R,則OP=$\frac{1}{2}$R,利用勾股定理,結(jié)合余弦定理和離心率公式,計(jì)算即可得出結(jié)論.

解答 解:因?yàn)椤螾AQ=60°且$\overrightarrow{OQ}=5\overrightarrow{OP}$,
所以△QAP為等邊三角形,
設(shè)AQ=2R,則PQ=2R,OP=$\frac{1}{2}$R,
漸近線方程為y=$\frac{a}$x,A(a,0),
取PQ的中點(diǎn)M,則AM=$\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$,
由勾股定理可得(2R)2-R2=($\frac{|ab|}{\sqrt{{a}^{2}+^{2}}}$)2,
所以(ab)2=3R2(a2+b2)①,
在△OQA中,$\frac{(\frac{5}{2}R)^{2}+(2R)^{2}-{a}^{2}}{2•\frac{5}{2}R•2R}$=$\frac{1}{2}$,
所以$\frac{21}{4}$R2=a2
①②結(jié)合c2=a2+b2,
解得c2=$\frac{7}{4}$b2=$\frac{7}{4}$(c2-a2),
即為3c2=7a2,
可得e=$\frac{c}{a}$=$\sqrt{\frac{7}{3}}$=$\frac{\sqrt{21}}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的性質(zhì):離心率,考查余弦定理、勾股定理,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知${(x-\frac{a}{x})^7}$展開式中x3的系數(shù)為84,則正實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知某口袋中有3個(gè)白球和a個(gè)黑球(a∈N*),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是ξ.若Eξ=3,則Dξ=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知復(fù)數(shù)z滿足(z-1)i=|i+1|,則z=(  )
A.-2-iB.2-iC.$1-\sqrt{2}i$D.$-1-\sqrt{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.隨著“全面二孩”政策推行,我市將迎來(lái)生育高峰,今年新春伊始,各醫(yī)院產(chǎn)科就已經(jīng)一片忙碌,至今熱度不減,衛(wèi)生部門進(jìn)行調(diào)查統(tǒng)計(jì),期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”,在人民醫(yī)院,共有50個(gè)寶寶降生,其中25個(gè)是“二孩”寶寶;博愛(ài)醫(yī)院共有30個(gè)寶寶降生,其中10個(gè)是“二孩”寶寶.
(1)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為一孩或二孩寶寶的出生與醫(yī)院有關(guān)?
 一孩二孩合計(jì)
人民醫(yī)院   
博愛(ài)醫(yī)院   
合計(jì)   
(2)從兩個(gè)醫(yī)院當(dāng)前出生的所有寶寶中按分層抽樣方法抽取8個(gè)寶寶做健康咨詢,若從這8個(gè)寶寶抽取兩個(gè)寶寶進(jìn)行體檢.求這兩個(gè)寶寶恰好都是來(lái)自人民醫(yī)院的概率.
附:${K^2}=\frac{{n{{({αb-bc})}^2}}}{{({α+b})({c+d})({α+c})({b+d})}}$
P(k2>k00.40.250.150.10
k00.7081.3232.0722.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某中藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無(wú)雨的概率相同且為p,兩天是否下雨互不影響,若兩天都下雨的概率為0.04.
周一無(wú)雨無(wú)雨有雨有雨
周二無(wú)雨有雨無(wú)雨有雨
收益10萬(wàn)元8萬(wàn)元5萬(wàn)元
(1)求p及基地的預(yù)期收益;
(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無(wú)雨時(shí)收益為11萬(wàn)元,有雨時(shí)收益為6萬(wàn)元,且額外聘請(qǐng)工人的成本為5000元,問(wèn)該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,輸出的結(jié)果為( 。
A.136B.134C.268D.266

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.?dāng)?shù)列{an}滿足a1=-1,an+1+2an=3.
(Ⅰ)證明{an-1}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)已知符號(hào)函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,設(shè)bn=an•sgn{an},求數(shù)列{bn}的前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知$\frac{1-i}{z}$=(1+i)2(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-$\frac{1}{2}$-$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案