15.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中點(diǎn),CC1=8.
(1)求證:平面AB1M⊥平面A1ABB1
(2)求平面AB1M與平面ABC所成二面角的正弦值.

分析 (1)連結(jié)A1B,交AB1于點(diǎn)P,取AB的中點(diǎn)N,連結(jié)CN,PN,MP,推導(dǎo)出四邊形MCNP是平行四邊形,從而CN∥MP,進(jìn)而CC1⊥CN,由AA1∥CC1,知CN⊥AA1,從而CN⊥平面A1ABB1,進(jìn)而MP⊥平面A1ABB1,由此能證明平面AB1M⊥平面A1ABB1
(2)以N為原點(diǎn),NA為x軸,CN為y軸,NP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面AB1M與平面ABC所成二面角的正弦值.

解答 證明:(1)連結(jié)A1B,交AB1于點(diǎn)P,
∵三棱柱ABC-A1B1C1中,四邊形ABB1A1是矩形,∴P是A1B的中點(diǎn),
取AB的中點(diǎn)N,連結(jié)CN,PN,MP,
則NP∥CM,且NP=CM,∴四邊形MCNP是平行四邊形,
∴CN∥MP,
又AC=BC,∴CN⊥AB,
∵CC1⊥平面ABC,∴CC1⊥CN,
又AA1∥CC1,∴CN⊥AA1,
∴CN⊥平面A1ABB1,∴MP⊥平面A1ABB1,
∵M(jìn)P?平面AB1M,∴平面AB1M⊥平面A1ABB1
解:(2)以N為原點(diǎn),NA為x軸,CN為y軸,NP為z軸,建立空間直角坐標(biāo)系,
∵AC=BC=5,AB=6,M是CC1中點(diǎn),CC1=8,
∴A(3,0,0),M(0,-4,4),B1(-3,0,8),
$\overrightarrow{AM}$=(-3,-4,4),$\overrightarrow{A{B}_{1}}$=(-6,0,8),
設(shè)平面AB1M的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=-3x-4y+4z=0}\\{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=-6x+8z=0}\end{array}\right.$,取x=4,得$\overrightarrow{n}$=(4,0,3),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面AB1M與平面ABC所成二面角的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{5}$,sinθ=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$.
∴平面AB1M與平面ABC所成二面角的正弦值為$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的正弦值的求法,考查空間中線線、線面、面面間的益關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在log23,2-3,cosπ這三個(gè)數(shù)中最大的數(shù)是log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f'(x),若2f(x)-f'(x)<2,f(0)=2018,則不等式f(x)>2017e2x+1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,b2=a2+c2-$\sqrt{3}$ac
(1)求B的大小;
(2)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.17世紀(jì)日本數(shù)學(xué)家們對(duì)這個(gè)數(shù)學(xué)關(guān)于體積方法的問(wèn)題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨(dú)特方法“會(huì)玉術(shù)”,其中,D為直徑,類似地,對(duì)于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3,其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長(zhǎng),假設(shè)運(yùn)用此“會(huì)玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1,k2,k3=(  )
A.$\frac{π}{4}$:$\frac{π}{6}$:1B.$\frac{π}{6}$:$\frac{π}{4}$:2C.1:3:$\frac{12}{π}$D.1:$\frac{3}{2}$:$\frac{6}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)為F1、F2,其中一條漸近線方程為y=3x,過(guò)點(diǎn)F2作x軸的垂線與雙曲線的一個(gè)交點(diǎn)為M,若△MF1F2的面積為18$\sqrt{10}$,則雙曲線的方程為( 。
A.x2-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-y2=1C.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(Ⅰ)求圖中實(shí)數(shù)a的值;
(Ⅱ)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于80分的人數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合$A=\left\{{x\left|{y=lgx}\right.}\right\},B=\left\{{y|y=\sqrt{x-1}}\right\}$,則A∪B=( 。
A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={0,1},B={x|(x+2)(x-1)<0,x∈Z},則A∪B=( 。
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{0}

查看答案和解析>>

同步練習(xí)冊(cè)答案