5.在log23,2-3,cosπ這三個(gè)數(shù)中最大的數(shù)是log23.

分析 利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性值域即可得出.

解答 解:log23>1,2-3∈(0,1),cosπ=-1這三個(gè)數(shù)中最大的數(shù)是log23.
故答案為:log23.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性值域,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)$f(x)=sin(\frac{π}{3}-ωx)(ω>0)$向左平移半個(gè)周期得g(x)的圖象,若g(x)在[0,π]上的值域?yàn)?[-\frac{{\sqrt{3}}}{2},1]$,則ω的取值范圍是(  )
A.$[\frac{1}{6},1]$B.$[\frac{2}{3},\frac{3}{2}]$C.$[\frac{1}{3},\frac{7}{6}]$D.$[\frac{5}{6},\frac{5}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知Sn為等差數(shù)列{an}的前n項(xiàng)和.若S9=18,則a3+a5+a7=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見(jiàn)》,某校計(jì)劃開(kāi)設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡(jiǎn)稱“組M”).

(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學(xué)營(yíng)活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.
(。┰O(shè)隨機(jī)變量X表示選出的4名同學(xué)中選擇課程G的人數(shù),求隨機(jī)變量X的分布列;
(ⅱ)設(shè)隨機(jī)變量Y表示選出的4名同學(xué)參加科學(xué)營(yíng)的費(fèi)用總和,求隨機(jī)變量Y的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(3,-2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.-3B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知{an}是各項(xiàng)為正數(shù)的等差數(shù)列,Sn為其前n項(xiàng)和,且4Sn=(an+1)2
(Ⅰ)求a1,a2的值及{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\{{S_n}-\frac{7}{2}{a_n}\}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在空間直角坐標(biāo)系O-xyz中,四面體A-BCD在xOy,yOz,zOx坐標(biāo)平面上的一組正投影圖形如圖所示(坐標(biāo)軸用細(xì)虛線表示).該四面體的體積是$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i是虛數(shù)單位,若(1-i)(a+i)=3-bi(a,b∈R),則a+b等于( 。
A.3B.1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=5,AB=6,M是CC1中點(diǎn),CC1=8.
(1)求證:平面AB1M⊥平面A1ABB1;
(2)求平面AB1M與平面ABC所成二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案