【題目】已知函數(shù),,是函數(shù)的導(dǎo)函數(shù).
(1)若,求證:對(duì)任意,;
(2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)當(dāng)時(shí),,只需證明的最小值大于等于零即可;
(2)法一:函數(shù)有兩個(gè)極值點(diǎn),即在上有兩個(gè)不等根,轉(zhuǎn)化為在上有兩個(gè)不等根,注意到和函數(shù)互為反函數(shù),將所求問(wèn)題進(jìn)一步轉(zhuǎn)化為和函數(shù)有兩個(gè)不同的交點(diǎn),構(gòu)造函數(shù),利用導(dǎo)數(shù)解決即可.法二:有兩個(gè)變號(hào)零點(diǎn),分,兩種情況討論,在討論時(shí),注意二次求導(dǎo),結(jié)合極限即可得到答案.
(1)當(dāng)時(shí),,,
在上單調(diào)遞增,
,
∴當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
∴,證畢.
(2)法一:函數(shù)有兩個(gè)極值點(diǎn),
即有兩個(gè)變號(hào)零點(diǎn),
即在上有兩個(gè)不等根,
即在上有兩個(gè)不等根,
即函數(shù)和的圖象有兩個(gè)不同的交點(diǎn).
∵函數(shù)和函數(shù)互為反函數(shù),
∴只需函數(shù)和函數(shù)有兩個(gè)不同的交點(diǎn),
即方程有兩個(gè)不等正根,
令,,
∴當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
∴,
又∵時(shí),;時(shí),,
∴.
法二:函數(shù)有兩個(gè)極值點(diǎn),即有兩個(gè)變號(hào)零點(diǎn),
當(dāng)時(shí),,由(1),則在
上是增函數(shù),無(wú)極值點(diǎn),
當(dāng)時(shí),令,則,因?yàn)?/span>,
,且在上是增函數(shù),存在,使得,
當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞
減,在上單調(diào)遞增,則,由,
得,則,令,
,在上是減函數(shù),所以,
即,又時(shí),;時(shí),,故在
上有兩個(gè)變號(hào)的零點(diǎn),從而函數(shù)有兩個(gè)極值點(diǎn),所以.
【點(diǎn)晴】
本題考查利用導(dǎo)數(shù)研究函數(shù)的極值、證明不等式的問(wèn)題,考查學(xué)生的邏輯推理能力,轉(zhuǎn)化與化歸的思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
①若,則的最大值為________;
②若函數(shù)有兩個(gè)零點(diǎn),則的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從生產(chǎn)的一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)國(guó)家有關(guān)部門(mén)規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)值不低于150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中為優(yōu)良,不高于185為合格,不低于215為優(yōu)秀.用樣本的該項(xiàng)質(zhì)量指標(biāo)值的頻率代替產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的概率.
①求產(chǎn)品該項(xiàng)指標(biāo)值的優(yōu)秀率;
②現(xiàn)從這批產(chǎn)品中隨機(jī)抽取3盒,求其中至少有1盒該項(xiàng)質(zhì)量指標(biāo)值為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80分”,估計(jì)的概率;
(Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)?jiān)诖痤}卡上將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
參考公式及數(shù)據(jù):,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)改革開(kāi)放以來(lái)經(jīng)濟(jì)發(fā)展迅猛,某一線城市的城鎮(zhèn)居民2012~2018年人均可支配月收入散點(diǎn)圖如下(年份均用末位數(shù)字減1表示).
(1)由散點(diǎn)圖可知,人均可支配月收入y(萬(wàn)元)與年份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到0.001),依此相關(guān)關(guān)系預(yù)測(cè)2019年該城市人均可支配月收入;
(2)在2014~2018年的五個(gè)年份中隨機(jī)抽取兩個(gè)數(shù)據(jù)作樣本分析,求所取的兩個(gè)數(shù)據(jù)中,人均可支配月收入恰好有一個(gè)超過(guò)1萬(wàn)元的概率.
注:,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在用1,2,…,8這八個(gè)數(shù)碼所組成的 全部無(wú)重復(fù)數(shù)字的八位數(shù)中,能被11整除的有______個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來(lái)勢(shì)洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無(wú)法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長(zhǎng)們的贊同.各地學(xué)校開(kāi)展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛(ài)國(guó)教育,擬開(kāi)設(shè)國(guó)學(xué)課,為了了解學(xué)生喜歡國(guó)學(xué)是否與性別有關(guān),該學(xué)校對(duì)100名學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡國(guó)學(xué) | 不喜歡國(guó)學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜歡國(guó)學(xué)與性別有關(guān)系?
(2)針對(duì)問(wèn)卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國(guó)學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國(guó)學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中女生人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面使用類(lèi)比推理,得到的結(jié)論正確的是( )
A. 直線,若,則.類(lèi)比推出:向量,,,若∥,∥,則∥.
B. 三角形的面積為,其中,,為三角形的邊長(zhǎng),為三角形內(nèi)切圓的半徑,類(lèi)比推出,可得出四面體的體積為,(,,,分別為四面體的四個(gè)面的面積,為四面體內(nèi)切球的半徑)
C. 同一平面內(nèi),直線,若,則.類(lèi)比推出:空間中,直線,若,則.
D. 實(shí)數(shù),若方程有實(shí)數(shù)根,則.類(lèi)比推出:復(fù)數(shù),若方程有實(shí)數(shù)根,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正整數(shù)按一定規(guī)律排成了如圖所示的三角形數(shù)表
設(shè)是位于這個(gè)三角形數(shù)表中從上到下數(shù)第行、從左到右數(shù)第個(gè)數(shù),如,若,則____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com