【題目】設(shè)函數(shù)
①若,則的最大值為________;
②若函數(shù)有兩個零點,則的取值范圍是________.
【答案】1
【解析】
①,當(dāng)a=0時,f(x),由此分析函數(shù)的單調(diào)性,據(jù)此分析可得答案;
②,根據(jù)題意,由函數(shù)的解析式分析可得圖象關(guān)于直線x=a對稱,若函數(shù)y=f(x)﹣b有兩個零點,即函數(shù)y=f(x)與y=b有2個交點,結(jié)合函數(shù)的圖象分析可得答案.
解;①,當(dāng)a=0時,f(x),
當(dāng)x≤0時,f(x)=2x,f(x)在(﹣∞,0]上為增函數(shù),
當(dāng)x>0時,﹣x<0,則f(x)=f(﹣x)=2﹣x=()x,
則f(x)在(0,+∞)為減函數(shù),
則f(x)max=f(0)=20=1;
②,根據(jù)題意,當(dāng)x≤a時,f(x)=2x﹣a,
當(dāng)x>a時,則有2a﹣x<a,
此時f(x)=f(2a﹣x)=2a﹣x,
f(x),其圖象關(guān)于直線x=a對稱,
若函數(shù)y=f(x)﹣b有兩個零點,即函數(shù)y=f(x)與y=b有2個交點,其圖象如圖:
必有0<b<1,即b的取值范圍為(0,1);
故答案為:①,1,②(0,1).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某種細菌的繁殖個數(shù)y隨天數(shù)x的變化情況,收集數(shù)據(jù)如下:
天數(shù)x | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖個數(shù)y | 6 | 12 | 25 | 49 | 95 | 190 |
(1)根據(jù)散點圖,判斷與哪一個適合作為y關(guān)于x的回歸方程類型;(給出判斷即可,不用說明理由)
(2)根據(jù)(1)中的判斷及表中數(shù)據(jù),求y關(guān)于x的回歸方程參考數(shù)據(jù):,,,,,
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個不相等的實數(shù)根, 則實數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B兩種品牌各三種車型2017年7月的銷量環(huán)比(與2017年6月比較)增長率如下表:
A品牌車型 | A1 | A2 | A3 | ||||
環(huán)比增長率 | -7.29% | 10.47% | 14.70% | ||||
B品牌車型 | B1 | B2 | B3 | ||||
環(huán)比增長率 | -8.49% | -28.06% | 13.25% | ||||
根據(jù)此表中的數(shù)據(jù),有如下關(guān)于7月份銷量的四個結(jié)論:①A1車型銷量比B1車型銷量多;
②A品牌三種車型總銷量環(huán)比增長率可能大于14.70%;
③B品牌三款車型總銷量環(huán)比增長率可能為正;
④A品牌三種車型總銷量環(huán)比增長率可能小于B品牌三種車型總銷量環(huán)比增長率.
其中正確結(jié)論的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左頂點為,過橢圓的右焦點作互相垂直的兩條直線分別交直線于兩點,交橢圓于另一點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:直線恒過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=3x2-2x,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=,Tn是數(shù)列{bn}的前n項和,求使得Tn<對所有n∈N*都成立的最小正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.
(1)求A∩B及A∪C;
(2)若U=R,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,是函數(shù)的導(dǎo)函數(shù).
(1)若,求證:對任意,;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com