13.原點到直線4x+3y-1=0的距離為$\frac{1}{5}$.

分析 直接由點到直線的距離公式得答案.

解答 解:由點到直線的距離公式可得,原點到直線4x+3y-1=0的距離d=$\frac{|-1|}{\sqrt{16+9}}$=$\frac{1}{5}$,
故答案為:$\frac{1}{5}$.

點評 本題考查點到直線的距離公式的應(yīng)用,關(guān)鍵是熟記公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲、乙兩人相約周六上午8:00到8:30之間在公交車站乘車去新華書店,先到者若等了15分鐘還沒有等到對方,則需發(fā)微信聯(lián)系.假設(shè)兩人的出發(fā)時間是獨立的,在8:00到8:30之間到達(dá)車站的時間是等可能的,則兩人不需要發(fā)微信聯(lián)系就能見面的概率是( 。
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知拋物線y2=4x的焦點為點F,過焦點F的直線交該拋物線于A、B兩點,O為坐標(biāo)原點,若△AOB的面積為$\sqrt{6}$,則|AB|=(  )
A.6B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{x-4y+4≤0}\\{x+y≤1}\\{x≥-3}\end{array}}\right.$,則x-y的最大值是( 。
A.-7B.$-\frac{13}{4}$C.-1D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P的底面ABCD的射影,N是PC的中點.
(Ⅰ)求證:平面MPB⊥平面PBC;
(Ⅱ)若MP=MC,求直線BN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.角90°化為弧度等于( 。
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在[-3,0)∪(0,3]上的奇函數(shù),當(dāng)x∈(0,3]時,f(x)的圖象如圖所示,那么滿足不等式f(x)≥2x-1 的x的取值范圍是[-3,-2]∪[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布4尺,半個月(按15天計算)總共織布81尺,問每天增加的數(shù)量為多少尺?該問題的答案為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=1$,則$|{\overrightarrow a-\overrightarrow b}|$=( 。
A.2B.$2\sqrt{3}$C.3D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案