9.已知函數(shù)f(x)=2cos2x$+\sqrt{3}$sin2x
(Ⅰ)求f($\frac{π}{4}$)的值
(Ⅱ)求f(x)的最小正周期及單調(diào)遞減區(qū)間.

分析 (Ⅰ)利用三角恒等變換,化簡函數(shù)的解析式,可得f($\frac{π}{4}$)的值.
(Ⅱ)根據(jù)函數(shù)的解析式,求得f(x)的最小正周期,再利用余弦函數(shù)的單調(diào)性求得它的單調(diào)遞減區(qū)間.

解答 解:(Ⅰ)∵函數(shù)f(x)=2cos2x$+\sqrt{3}$sin2x=cos2x+$\sqrt{3}$sin2x+1=2cos(2x-$\frac{π}{3}$)+1,
∴f($\frac{π}{4}$)=2cos$\frac{π}{6}$+1=$\sqrt{3}$+1.
(Ⅱ)∵f(x)=2cos(2x-$\frac{π}{3}$)+1,故它的最小正周期為$\frac{2π}{2}$=π,
令2kπ≤2x-$\frac{π}{3}$≤2kπ+π,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
可得該函數(shù)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

點評 本題主要考查三角恒等變換,余弦函數(shù)的周期性和單調(diào)性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則ω、φ的值是( 。
A.2,$\frac{π}{8}$B.2,$\frac{π}{4}$C.1,$\frac{π}{3}$D.1,$\frac{2π}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在下列四個正方體中,能得出AB⊥CD的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)g(x)=-$\frac{1}{x}$的圖象關于點A(-$\frac{1}{2}$,$\frac{1}{2}$)的對稱圖象為函數(shù)y=f(x)的圖象.
(1)求y=f(x);
(2)用函數(shù)單調(diào)性的定義證明y=f(x)在(一1,+∞)上為單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l的極坐標方程為ρ=$\frac{\sqrt{3}}{sin(θ+\frac{π}{3})}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$,(φ為參數(shù))
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲線C’,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=x+lnx的零點所在的區(qū)間是( 。
A.(0,$\frac{1}{e}$)B.(0,1)C.(1,2)D.(1,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設命題p:直線mx-y+1=0與圓(x-2)2+y2=4有公共點;設命題q:實數(shù)m滿足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示雙曲線.
(1)若“p∧q”為真命題,求實數(shù)m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.為了得到函數(shù)y=sin2xcos$\frac{π}{3}$+cos2xsin$\frac{π}{3}$(x∈R)的圖象,只需將y=sin2x(x∈R)的圖象上所有的點( 。
A.向右平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{6}$個單位長度
C.向右平移$\frac{π}{3}$個單位長度D.向左平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知sinx=$\frac{\sqrt{2}}{2}$,當x∈[0,2π]時,求角x.

查看答案和解析>>

同步練習冊答案