17.已知函數(shù)g(x)=-$\frac{1}{x}$的圖象關(guān)于點(diǎn)A(-$\frac{1}{2}$,$\frac{1}{2}$)的對稱圖象為函數(shù)y=f(x)的圖象.
(1)求y=f(x);
(2)用函數(shù)單調(diào)性的定義證明y=f(x)在(一1,+∞)上為單調(diào)遞增函數(shù).

分析 (1)設(shè)函數(shù)y=f(x)的圖象上任一點(diǎn)(x,y),相應(yīng)y=g(x)圖象上一點(diǎn)為(m,n),運(yùn)用中點(diǎn)坐標(biāo)公式和代入法,即可得到所求f(x)的解析式;
(2)由單調(diào)性的定義,注意設(shè)自變量和作差、變形和定符號、下結(jié)論等步驟.

解答 解:(1)函數(shù)g(x)=-$\frac{1}{x}$的圖象關(guān)于點(diǎn)A(-$\frac{1}{2}$,$\frac{1}{2}$)對稱,
設(shè)函數(shù)y=f(x)的圖象上任一點(diǎn)(x,y),相應(yīng)y=g(x)圖象上一點(diǎn)為(m,n),
可得x+m=-1,y+n=1,
即為m=-1-x,n=1-y,
代入g(x)=-$\frac{1}{x}$,可得1-y=-$\frac{1}{-1-x}$,
化為y=f(x)=$\frac{x}{x+1}$;
(2)證明:令x1>x2>-1,
則f(x1)-f(x2)=$\frac{{x}_{1}}{{x}_{1}+1}$-$\frac{{x}_{2}}{{x}_{2}+1}$=$\frac{{x}_{1}-{x}_{2}}{({x}_{1}+1)({x}_{2}+1)}$,
由x1>x2>-1,
可得x1-x2>0,x1+1>0,x2+1>0,
即有f(x1)-f(x2)>0,即f(x1)>f(x2),
可得y=f(x)在(-1,+∞)上為單調(diào)遞增函數(shù).

點(diǎn)評 本題考查函數(shù)的對稱性和應(yīng)用:求函數(shù)的解析式,考查單調(diào)性的證明,注意運(yùn)用定義法,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l過點(diǎn)P(2,-1),且與直線2x+y-l=0互相垂直,則直線l的方程為( 。
A.x-2y=0B.x-2y-4=0C.2x+y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=(x-1)•ex-kx,曲線y=f(x)上存在兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)k的取值范圍是(-$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知b=15,c=5$\sqrt{3}$,B=60°,求∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.《九章算術(shù)》是我國古代數(shù)學(xué)名著,匯集古人智慧,其中的“更相減損術(shù)”更是有著深刻的應(yīng)用.如圖所示程序框圖的算法思想即來源于此,若輸入的a=2016,輸出的a=21,則輸入的b可能為( 。
A.288B.294C.378D.399

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某單位N名員工參加“我愛閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.下面是年齡的分布表:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
人數(shù)28ab
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡低于40歲的員工用分層抽樣的方法抽取42人,則年齡在第1,2,3組得員工人數(shù)分別是多少?
(Ⅲ)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對該單位所有員工中按性別比例抽查的40人是否喜歡閱讀國學(xué)類書籍進(jìn)行了調(diào)查,調(diào)查結(jié)果如下所示:(單位:人)
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計(jì)
 男 14 4 18
 女 8 14 22
 合計(jì) 22 18 40
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2cos2x$+\sqrt{3}$sin2x
(Ⅰ)求f($\frac{π}{4}$)的值
(Ⅱ)求f(x)的最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R,已知f(x)在x=3處取得極值,
(Ⅰ)求f(x)在點(diǎn)A(1,f(1))處的切線方程
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=||x|-6|.
(1)求不等式f(x)<5的整數(shù)解的個(gè)數(shù);
(2)若存在x∈R,使f(x)-|x|>10-m2成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案