4.廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,也是城市精神文明建設(shè)成果的一個重要象征.2016年某校社會實踐小組對某小區(qū)廣場舞的開展?fàn)顩r進行了年齡的調(diào)查,隨機抽取了40名廣場舞者進行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(I)計算這40名廣場舞者中年齡分布在[40,70)的人數(shù);
(II)估計這40名廣場舞者年齡的眾數(shù)和中位數(shù);
(III)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者中恰有一人年齡在[30,40)的概率.

分析 (1)由頻率分布直方圖能求出這40名廣場舞者中年齡分布在[40,70)的人數(shù).
(2)由直方圖能求出這組數(shù)據(jù)的眾數(shù)和中位數(shù).
(3)由直方圖可知,年齡在[20,30)有2人,分別記為a1,a2,在[30,40)有4人,分別記為b1,b2,b3,b4,利用列舉法能求出從這6人中任選兩人,這兩名廣場舞者中恰有一人年齡在[30,40)的概率.

解答 解:(1)由表中數(shù)據(jù)知,
這40名廣場舞者中年齡分布在[40,70)的人數(shù)為(0.02+0.03+0.025)×10×40=30
(2)由直方圖可知這組數(shù)據(jù)的眾數(shù)為55
因為(0.005+0.01+0.02+0.015)×10=0.5,
故中位數(shù)為55.
(3)由直方圖可知,年齡在[20,30)有2人,分別記為a1,a2,
在[30,40)有4人,分別記為b1,b2,b3,b4
現(xiàn)從這6人中任選兩人,共有如下15種選法:
(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),
(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),
(b2,b3),(b2,b4),(b3,b4),
其中恰有1人在[30,40)有8種,
故這兩名廣場舞者中恰有一人年齡在[30,40)的概率為p=$\frac{8}{15}$.

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若0<α<2π且cosα≤$\frac{1}{2}$,sinα>$\frac{\sqrt{2}}{2}$,則角α的取值范圍是( 。
A.[$\frac{π}{3}$,$\frac{3}{4}$π)B.($\frac{π}{3}$,$\frac{3}{4}$π]C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{3}{4}$π)∪($\frac{π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△OMN中,點A在OM上,點B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則終點P落在四邊形ABNM內(nèi)(含邊界)時,$\frac{y+x+2}{x+1}$的取值范圍為[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如表:
組別PM2.5濃度(微克/立方米)頻數(shù)(天)頻率
第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)將這20天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求頻率分布直方圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標準的天數(shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知α為第三象限角,且$sin({α-\frac{7π}{2}})=-\frac{1}{5}$,則$\frac{{sin({π-α})cos({2π-α})tan({\frac{3π}{2}-α})}}{{cot({-3π-α})sin({-\frac{π}{2}-α})}}$=-$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=2cos({\frac{1}{2}x+\frac{π}{3}})$圖象的一個對稱中心為( 。
A.$({\frac{4π}{3},0})$B.$({\frac{π}{2},0})$C.$({\frac{π}{3},0})$D.$({\frac{π}{6},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,A=$\frac{π}{3}$,AB=2,且△ABC的面積為$\frac{\sqrt{3}}{2}$,則邊AC的長為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,一個幾何體的三視圖如圖所示(正視圖、側(cè)視圖和俯視圖)為兩個等腰直角三角形和一個邊長為a的正方形,則其外接球的體積為(  )
A.$\frac{{\sqrt{3}}}{2}π{a^3}$B.$\frac{{\sqrt{3}}}{2}a$C.$\frac{1}{2}{a^3}$D.$\frac{1}{2}π{a^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(1)證明:DQ∥平面CPM;
(2)若二面角C-AB-D的大小為$\frac{π}{3}$,求tan∠BDC.

查看答案和解析>>

同步練習(xí)冊答案