3.若函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-6,x≥0}\\{lo{g}_{2}|x|,x<0}\\{\;}\end{array}\right.$,則f(f(2))=2.

分析 f由函數(shù)解析式先求出f(2)的值,再代入對應(yīng)的解析式求出f(f(2))的值.

解答 解:由題意得,f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-6,x≥0}\\{lo{g}_{2}|x|,x<0}\\{\;}\end{array}\right.$,
則f(2)=-4,f(-4)=${log}_{2}^{4}$=2,即f(f(2))=2,
故答案為:2.

點評 本題考查分段函數(shù)的函數(shù)值,對于多層函數(shù)值應(yīng)從內(nèi)到外依次求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在三角形ABC中,AB=2,AC=1,cos∠BAC=$\frac{1}{3}$,∠BAC的平分線交BC于點D.
(1)求邊BC長及$\frac{BD}{DC}$的值;
(2)求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,D為AC的中點,$\overrightarrow{BC}$=3$\overrightarrow{BE}$,BD與 AE交于點F,若$\overrightarrow{AF}$=λ$\overrightarrow{AE}$,則實數(shù)λ的值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos20°sin40°+cos70°sin50°等于( 。
A.cos20°B.sin20°C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖的程序框圖,若輸出S=$\frac{15}{8}$,則輸入p的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{6}$,sinαsinβ=$\frac{1}{3}$,則tan(β-α)的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)α為銳角,已知sinα=$\frac{3}{5}$.
(1)求cosα的值;
(2)求cos(α+$\frac{π}{6}}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A,B,C所對的邊分別為a,b,c.若a=1,B=$\frac{π}{4}$,△ABC的面積S=2,則$\frac{sinB}$的值為( 。
A.5$\sqrt{2}$B.5C.$\frac{5\sqrt{2}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù).
①sin210°+cos240°+sin10°cos40°
②sin220°+cos250°+sin20°cos50°
③sin240°+cos270°+sin40°cos70°
④sin2(-15°)+cos215°+sin(-15°)cos15°
(1)試從上述四個式子中選擇一個,求出這個常數(shù).
(2)根據(jù)(1)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣成三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案