分析 先利用歸納推理得出一般結(jié)論,再利用三角恒等變換進(jìn)行證明.
解答 解:(1)∵以下4個(gè)式子等于同一個(gè)常數(shù),①sin210°+cos240°+sin10°cos40°,
②sin220°+cos250°+sin20°cos50°,
③sin240°+cos270°+sin40°cos70°,
④sin2(-15°)+cos215°+sin(-15°)cos15°,
而由④可得sin2(-15°)+cos215°+sin(-15°)cos15°=1-$\frac{1}{2}$sin30°=$\frac{3}{4}$,
故這個(gè)常數(shù)等于$\frac{3}{4}$.
(2)由(1)可得 sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$,
推廣可得sin2α+cos2(α+30°)+sinαcos(α+30°)=$\frac{3}{4}$.
證明:∵sin2α+cos2(α+30°)+sinαcos(α+30°)=sin2α+${(\frac{\sqrt{3}}{2}cosα-\frac{1}{2}sinα)}^{2}$+sinα[$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}sinα$]
=sin2α+$\frac{3}{4}$cos2 α+$\frac{1}{4}$sin2α-$\frac{\sqrt{3}}{2}$sinαcosα+$\frac{\sqrt{3}}{2}$sinαcosα-$\frac{1}{2}$sin2α=$\frac{3}{4}$sin2α+$\frac{3}{4}$cos2α=$\frac{3}{4}$,
∴sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$ 成立.
點(diǎn)評(píng) 本題主要考查歸納推理,三角恒等變換,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3,4} | C. | {2,3,4} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com