分析 (1)根據(jù)平面向量的數(shù)量積求出f(x),再求f(x)的周期和單調(diào)減區(qū)間;
(2)根據(jù)x∈[0,$\frac{π}{2}$]時2x-$\frac{π}{3}$的范圍,求出f(x)的最值即得值域.
解答 解:(1)$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow$=($\sqrt{3}$,-1),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow$=$\sqrt{3}$sin(2x-$\frac{π}{3}$)-1;
∴f(x)的周期為T=$\frac{2π}{2}$=π,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,
解得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,k∈Z,
∴f(x)的單調(diào)減區(qū)間為[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z;
(2)x∈[0,$\frac{π}{2}$]時,0≤2x≤π,
∴-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{2π}{3}$,
∴-$\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{3}$)≤1,
∴f(x)的最小值為$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)-1=-$\frac{5}{2}$,
最大值為$\sqrt{3}$×1-1=$\sqrt{3}$-1,
∴f(x)的值域?yàn)閇-$\frac{5}{2}$,$\sqrt{3}$-1].
點(diǎn)評 本題考查了平面向量的數(shù)量積與三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-2x-1≥0 | B. | ?x∈R,x2-2x-1<0 | C. | ?x∈R,x2-2x-1<0 | D. | ?x∈R,x2-2x-1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 8 | C. | 11 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (-∞,-3)∪(1,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com