16.若關(guān)于x的不等式|x+1|-|x-2|>a2+2a有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為( 。
A.(-3,1)B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

分析 根據(jù)絕對(duì)值不等式,求出|x+1|-|x-2|的最大值等于3,從而有a2+2a小于|x+1|-|x-2|的最大值3,列出不等關(guān)系解出實(shí)數(shù)a的取值范圍即得.

解答 解:∵|x+1|-|x-2|≤|(x+1)-(x-2)|=3,
∴-3≤|x+1|-|x-2|≤3,
由不等式|x+1|-|x-2|>a2+2a有實(shí)數(shù)解,
知3>a2+2a,解得-1<a<3.
故選B.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式、有關(guān)絕對(duì)值不等式有解的問(wèn)題.利用a2+2a小于|x+1|-|x-2|的最大值,求出實(shí)數(shù)a的取值范圍是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$$•\overrightarrow{c}$=$\overrightarrow$$•\overrightarrow{c}$>0,|$\overrightarrow{c}$|=3.
(Ⅰ)求向量$\overrightarrow{c}$的坐標(biāo);
(Ⅱ)求|3$\overrightarrow{a}$-$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\overrightarrow{a}$=(sin(2x-$\frac{π}{3}$),1),$\overrightarrow$=($\sqrt{3}$,-1),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的周期及單調(diào)減區(qū)間.
(2)已知x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(2,3,0),$\overrightarrow$=(-3,0,4),且k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$互相垂直,則k=$\frac{31}{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=1,CC1=2,則異面直線A1B與AC所成角的余弦值是$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題P:“?x>0,ex>x+1”,則¬P為( 。
A.?x≤0,ex≤x+1B.?x≤0,ex>x+1C.?x>0,ex≤x+1D.?x>0,ex≤x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=asinx,g(x)=lnx,其中a∈R,y=g-1(x)是y=g(x)的反函數(shù).
(1)若0<a≤1,證明:函數(shù)G(x)=f(1-x)+g(x)在區(qū)間(0,1)上是增函數(shù);
(2)證明:$\sum_{i=1}^{n}$sin$\frac{1}{(1+k)^{2}}$<ln2;
(3)設(shè)F(x)=g-1(x)-mx2-2(x+1)+b,若對(duì)任意的x>0,m<0有F(x)>0恒成立,求滿足條件的最小整數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合$A=\left\{{x|0≤x<1}\right\},B=\left\{{x|\frac{1}{x}≥1}\right\}$,則A∪B=( 。
A.RB.[0,+∞)C.[0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在正項(xiàng)等比數(shù)列{an}中,若a4+a3-2a2-2a1=6,則a5+a6的最小值為48.

查看答案和解析>>

同步練習(xí)冊(cè)答案