15.甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個(gè)數(shù)字記為a,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為b,且a、b∈{0,1,2,…,9}.若|a-b|=1,則稱(chēng)甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則二人“心有靈犀”的概率為$\frac{9}{50}$.

分析 由題意知本題是一個(gè)古典概型.試驗(yàn)發(fā)生的所有事件是從0,1,2,3,4,5,6,7,8,9十個(gè)數(shù)中任取兩個(gè)數(shù)由分步計(jì)數(shù)原理知共有10×10種不同的結(jié)果,而滿足條件的|a-b|=1的情況通過(guò)列舉得到共18種情況,代入公式得到結(jié)果.

解答 解:由題意知本題是一個(gè)古典概型,
試驗(yàn)發(fā)生的所有事件是從0,1,2,3,4,5,6,7,8,9十個(gè)數(shù)中任取兩個(gè)共有10×10種不同的結(jié)果,
則|a-b|=1的情況有:0,1;1,0;1,2;2,1;2,3;3,2;3,4;4,3;
4,5;5,4;5,6;6,5;6,7;7,6;7,8;8,7;8,9;9,8共18種情況,
甲乙出現(xiàn)的結(jié)果共有10×10=100,
∴他們”心有靈犀”的概率為P=$\frac{9}{50}$,
故答案為:$\frac{9}{50}$.

點(diǎn)評(píng) 本題考查了概率的簡(jiǎn)單計(jì)算能力,是一道列舉法求概率的問(wèn)題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.在列舉時(shí),滿足條件的事件容易漏掉,同學(xué)們做題時(shí)要按照一定的順序比如從大到小來(lái)列舉.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法中正確的是( 。
A.一個(gè)命題的逆命題為真,則它的逆否命題一定為真
B.“|a|>|b|”與“a2>b2”不等價(jià).
C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”.
D.一個(gè)命題的否命題為真,則它的逆命題一定為真.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1,平面α過(guò)直線BD,α⊥平面AB1C,α∩平面AB1C=m,平面β過(guò)直線A1C1,β∥平面AB1C,β∩平面ADD1A1=n,則m,n所成角的余弦值為( 。
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)P(2,$\sqrt{2}$),離心率e=$\frac{\sqrt{2}}{2}$,直線l的漸近線為x=4.
(1)求橢圓C的方程;
(2)經(jīng)過(guò)橢圓右焦點(diǎn)D的任一直線(不經(jīng)過(guò)點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3,問(wèn)是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖為某工廠工人生產(chǎn)能力頻率分布直方圖,則估計(jì)此工廠工人生產(chǎn)能力的平均值為133.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線 y+3=0的傾斜角是( 。
A.B.45°C.90°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.9-2=(  )
A.81B.$\frac{1}{81}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知m=$\frac{tan(α+β+γ)}{tan(α-β+γ)}$,若sin2(α+γ)=3sin2β,則m=( 。
A.-1B.$\frac{3}{4}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正四棱臺(tái)(由正四棱錐截得的棱臺(tái)叫做正四棱臺(tái))上底面邊長(zhǎng)為6,高和下底面邊長(zhǎng)都是12,求它的側(cè)面積和體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案