【題目】已知,在三棱柱中,,,,如圖.
(1)求證:平面;
(2)若,求平面與平面所成銳二面角的余弦.
【答案】(1)見解析(2)
【解析】
(1)推導(dǎo)出四邊形是菱形,從而,由,,得,由此能證明平面.
(2)由,得平面,從而平面,設(shè),分別以直線,為,軸,以過點(diǎn)且平行于的直線(過的中點(diǎn))為軸,建立空間直角坐標(biāo)系,由此能求出平面與平面所成銳二面角的余弦.
解:(1)∵,∴四邊形是菱形,∴.
∵,,∴.
∵和是平面內(nèi)兩相交直線,
∴平面.
(2)∵,和是平面兩相交直線,
∴平面.∴平面.
設(shè),分別以直線、為、軸,以過點(diǎn)且平行于的直線(過的中點(diǎn))為軸,建立如圖所示的空間直角坐標(biāo)系.
設(shè),∵,
∴,,.
∴,.
設(shè)是平面的一個(gè)法向量,則,,
即,,∴.
不妨取,得.
由以上可知,平面平面,
設(shè)中點(diǎn)為,則且平面,.
∴.
所以平面與平面所成銳二面角的余弦為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,、分別在和上(異于端點(diǎn)),則過三點(diǎn)、、的平面被正方體截得的圖形不可能是( )
A.正方形B.不是正方形的菱形
C.不是正方形的矩形D.梯形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國正逐漸進(jìn)入老齡化社會(huì),老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個(gè)等級,并以80歲為界限分成兩個(gè)群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:
據(jù)統(tǒng)計(jì),該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā)放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:
①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼300元;
②80歲以下老人每人每月發(fā)放生活補(bǔ)貼200元;
③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100元.
則政府執(zhí)行此計(jì)劃的年度預(yù)算為 ___________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長為且面積為的菱形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線,過右焦點(diǎn)F2,且它們的斜率乘積為,設(shè),分別與橢圓交于點(diǎn),和,,的中點(diǎn)為,的中點(diǎn)為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)極值點(diǎn)(為自然對數(shù)的底數(shù)).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在明代珠算發(fā)明之前,我們的先祖從春秋開始多是用算籌為工具來記數(shù)、列式和計(jì)算.算籌實(shí)際上是一根根相同長度的小木棍,如圖,是利用算籌表示數(shù)1~9的一種方法,例如:47可以表示為“”,如果用算籌表示一個(gè)不含“0”且沒有重復(fù)數(shù)字的三位數(shù),這個(gè)數(shù)至少要用8根小木棍的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
(1)證明:當(dāng)時(shí),;
(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在三棱柱中,為邊的中點(diǎn),.
(1)證明:平面;
(2)若,為中點(diǎn)且,,,求平面與平面所成二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com