【題目】已知函數(shù),.
(1)討論函數(shù)與函數(shù)的零點(diǎn)情況;
(2)若,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
注:.
【答案】(1)當(dāng)時(shí),不存在零點(diǎn);當(dāng)時(shí),有一個(gè)零點(diǎn)為,當(dāng)時(shí), 不存在零點(diǎn),當(dāng)時(shí),不存在零點(diǎn),當(dāng)且時(shí),有一個(gè)零點(diǎn)為;(2).
【解析】試題分析:(1)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性與值域可得當(dāng)時(shí),不存在零點(diǎn);當(dāng)時(shí), 函數(shù)有且僅有一個(gè)零點(diǎn),根據(jù)冪函數(shù)的性質(zhì)可得當(dāng)時(shí), 不存在零點(diǎn),當(dāng)時(shí),不存在零點(diǎn),當(dāng)且時(shí),有一個(gè)零點(diǎn);(2)當(dāng),函數(shù)在區(qū)間上單調(diào)遞增.又,符合題意;當(dāng)時(shí),存在,使,不合題意,綜合兩種情況可得結(jié)果.
試題解析:(1)函數(shù),
當(dāng)時(shí),不存在零點(diǎn);當(dāng)時(shí),
所以函數(shù)有且僅有一個(gè)零點(diǎn)為.
函數(shù).
當(dāng)時(shí),不存在零點(diǎn);
當(dāng)時(shí),,且函數(shù)的定義域是,此時(shí)函數(shù)不存在零點(diǎn);
當(dāng)且時(shí),令,得,得,此時(shí)函數(shù)有且僅有一個(gè)零點(diǎn)為.
(2)若,則,.
令,得,則函數(shù)的定義域是;
令,得,則函數(shù)的定義域是.
因?yàn)?/span>對(duì)任意恒成立,
所以對(duì)任意恒成立.
令,則對(duì)任意恒成立.
.
討論:當(dāng),即時(shí),且不恒為0,
所以函數(shù)在區(qū)間上單調(diào)遞增.
又,
所以對(duì)任意恒成立.故符合題意;
當(dāng)時(shí),令,得.
令,得,
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
所以.又,所以當(dāng)時(shí),存在,使.
故知對(duì)任意不恒成立.故不符合題意.
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)欲做一個(gè)介紹企業(yè)發(fā)展史的銘牌,銘牌的截面形狀是如圖所示的扇形環(huán)面(由扇形挖去扇形后構(gòu)成的).已知,線段與弧、弧的長(zhǎng)度之和為米,圓心角為弧度.
(1)求關(guān)于的函數(shù)解析式;
(2)記銘牌的截面面積為,試問取何值時(shí),的值最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐三彩,中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在中國(guó)的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠在生產(chǎn)過程中,對(duì)仿制100件工藝品測(cè)得其重量(單位:) 數(shù)據(jù),將數(shù)據(jù)分組如下表:
(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是2.25)作為代表.據(jù)此,估計(jì)這100個(gè)數(shù)據(jù)的平均值;
(2)根據(jù)樣本數(shù)據(jù),以頻率作為槪率,若該陶瓷廠生產(chǎn)這樣的工藝品5000件,試估計(jì)重量落在中的件數(shù);
(3)從第一組和第六組6件工藝品中隨機(jī)抽取2個(gè)工藝品,求一個(gè)來自第一組,一個(gè)來自第六組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過的直線與橢圓交于兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)如圖,點(diǎn),分別是橢圓的左頂點(diǎn)、左焦點(diǎn),直線與橢圓交于不同的兩點(diǎn)、(、都在軸上方).且.證明:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是異面直線,則以下四個(gè)命題:①存在分別經(jīng)過直線和的兩個(gè)互相垂直的平面;②存在分別經(jīng)過直線和的兩個(gè)平行平面;③經(jīng)過直線有且只有一個(gè)平面垂直于直線;④經(jīng)過直線有且只有一個(gè)平面平行于直線,其中正確的個(gè)數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中小學(xué)生的視力狀況受到社會(huì)的廣泛關(guān)注,某市有關(guān)部門從全市6萬名高一學(xué)生中隨機(jī)抽取了400名,對(duì)他們的視力狀況進(jìn)行一次調(diào)查統(tǒng)計(jì),將所得到的有關(guān)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.從左至右五個(gè)小組的頻率之比依次是.
(1)抽取的400名學(xué)生中視力在范圍內(nèi)的學(xué)生約有多少人?
(2)如果視力達(dá)到5.0以上算正常,用樣本估計(jì)總體,求全市高一學(xué)生中視力正常的學(xué)生有多少人?
(3)從第4組和第5組的學(xué)生中按分層抽樣的方式抽取樣本容量為8人的樣本,再?gòu)臉颖局须S機(jī)抽取2人進(jìn)行問卷調(diào)查,請(qǐng)求出2人來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,分別是橢圓的左、右頂點(diǎn)(如圖所示),點(diǎn)在橢圓的長(zhǎng)軸上運(yùn)動(dòng),且.設(shè)圓是以點(diǎn)為圓心,為半徑的圓.
(1)若,圓和橢圓在第一象限的交點(diǎn)坐標(biāo)為,求橢圓的方程;
(2)若橢圓的離心率為,過點(diǎn)作互相垂直的兩條直線,交橢圓于P,Q兩點(diǎn),若直線PQ過點(diǎn)M,求m的值(用含的代數(shù)式表示);
(3)當(dāng)圓與橢圓有且僅有點(diǎn)一個(gè)交點(diǎn)時(shí),求的運(yùn)動(dòng)范圍(用含的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.
(1)證明:平面平面;
(2)若為的中點(diǎn),且,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(e為自然對(duì)數(shù)的底數(shù))
(1)求的最小值;
(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com