分析 在△ABC中,根據(jù)條件的正弦定理求出角B、C,由邊角關系和內角和定理求出∠BAD、∠ADB,在△ABD中,由正弦定理和特殊角的三角函數(shù)值求出AD.
解答 解:如圖所示:∵在△ABC中,∠A=$\frac{2}{3}$π,AB=2,BC=$\sqrt{6}$,
∴由正弦定理得$\frac{BC}{sin∠A}=\frac{AB}{sin∠C}$,
則sin∠C=$\frac{AB•sin∠A}{BC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{6}}$$\frac{\sqrt{2}}{2}$,
∵∠A是鈍角,且0<∠C<π,∴∠C=$\frac{π}{4}$,
則∠B=π-∠A-∠C=$π-\frac{2π}{3}-\frac{π}{4}$=$\frac{π}{12}$,
∵AD=BD,∴∠BAD=∠B=$\frac{π}{12}$,則∠ADB=π-∠B-∠BAD=$\frac{5π}{6}$,
在△ABD中,由正弦定理得$\frac{AD}{sin∠B}=\frac{AB}{sin∠ADB}$,
∴AD=$\frac{AB•sin∠B}{sin∠ADB}$=$\frac{2•sin\frac{π}{12}}{sin\frac{5π}{6}}$=$\frac{2×\frac{\sqrt{6}-\sqrt{2}}{4}}{\frac{1}{2}}$=$\sqrt{6}-\sqrt{2}$,
故答案為:$\sqrt{6}-\sqrt{2}$.
點評 本題考查正弦定理在解三角形中的應用,內角和定理,注意邊角關系,考查化簡、計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\sqrt{3}$,3) | B. | ($\sqrt{3}$,2$\sqrt{3}}$) | C. | (3,2$\sqrt{3}}$) | D. | ($\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com