20.某班有6名班干部,其中男生4人,女生2人,任選3人參加學(xué)校組織的義務(wù)植樹(shù)活動(dòng).
(I) 求男生甲、女生乙至少有1人被選中的概率;
(II) 設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P (A)和P (B|A).

分析 (1)利用對(duì)立事件的概率公式求解即可;
(2)求出男生甲被選中的概率、男生甲、女生乙都被選中的概率,即可得出結(jié)論.

解答 解:(1)男生甲、女生乙至少有1人被選中的概率P=1-$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{4}{5}$;
(2)P(A)=$\frac{{C}_{5}^{2}}{{C}_{6}^{3}}$=$\frac{1}{2}$,P(AB)=$\frac{{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,P(B|A)=$\frac{\frac{1}{5}}{\frac{1}{2}}$=$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查隨機(jī)事件的概率和條件概率公式等知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若數(shù)列{an}滿足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$,則a1a2…an的最小值為2-69

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(x+1)lnx-ax+a(a為常數(shù),且為正實(shí)數(shù)).
(1)若f(x)在(0,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)設(shè)α,β為銳角,且$sinα=\frac{{\sqrt{5}}}{5},cosβ=\frac{{3\sqrt{10}}}{10}$,求α+β的值;
 (2)化簡(jiǎn)求值:$sin50°(1+\sqrt{3}tan10°)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若一個(gè)圓錐的母線與底面所成的角為$\frac{π}{6}$,體積為125π,則此圓錐的高為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若向量$\overrightarrow{a}$與向量$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且當(dāng)λ∈R時(shí),|$\overrightarrow-λ\overrightarrow{a}$|的最小值為2$\sqrt{2}$,則向量$\overrightarrow{a}+\overrightarrow$在向量$\overrightarrow{a}$方向上的投影為( 。
A.1 或2B.2C.1 或3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,平行四邊形ABCD的兩條對(duì)角線相交于點(diǎn)O,點(diǎn)E、F分別在邊AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直線EF交于AC于點(diǎn)K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,則λ等于( 。
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.以模型y=cekx(e為自然對(duì)數(shù)的底)去擬合一組數(shù)據(jù)時(shí),為了求出回歸直線方程,設(shè)z=lny,其變換后得到線性回歸方程為z=0.4x+2,則c=e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列說(shuō)法錯(cuò)誤的是( 。
A.若命題p∧q為假命題,則p,q都是假命題
B.已知命題p:?x∈R,x2+x+1>0,則¬p:?x0∈R,x02+x0+1≤0
C.命題“若x2-3x+2=0,則x=1”的逆命題為:“若x≠1,則x2-3x+2≠0”
D.“x=1”是“x2-3x+2=0”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案