10.若數(shù)列{an}滿足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$,則a1a2…an的最小值為2-69

分析 數(shù)列{an}滿足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$>0,可得log2an+1=2log2an+20.令log2an=bn,b1=-19.可得:bn+1+20=2(bn+20),利用等比數(shù)列的通項(xiàng)公式bn=2n-1-20,log2an=2n-1-20,令a1a2…an=tn.通過去對數(shù)運(yùn)算,利用函指數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵數(shù)列{an}滿足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$>0,
∴l(xiāng)og2an+1=2log2an+20.
令log2an=bn,b1=-19.
∴bn+1=2bn+20,變形為:bn+1+20=2(bn+20),
∴數(shù)列{bn+20}是等比數(shù)列,首項(xiàng)為1,公比為2.
∴bn+20=2n-1,即bn=2n-1-20,
∴l(xiāng)og2an=2n-1-20,
令a1a2…an=tn
∴l(xiāng)og2tn=log2a1+log2a2+…+log2an=(1+2+22+…+2n-1)-20n
=$\frac{{2}^{n}-1}{2-1}$-20n=2n-1-20n.
∴a1a2…an=tn=${2}^{{2}^{n}-1-20n}$.
n=1時(shí),指數(shù)=-19;n=2時(shí),指數(shù)=-37;n=3時(shí),指數(shù)=-53;n=4時(shí),指數(shù)=-65.n=5時(shí),指數(shù)=-69;n=6時(shí),指數(shù)=-57,n≥5時(shí),指數(shù)單調(diào)遞增.
則a1a2…an的最小值為 2-69
故答案為:2-69

點(diǎn)評 本題考査了等比數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、對數(shù)運(yùn)算性質(zhì)、函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=3x-x3,x∈R.
(1)求f'(x)在[-2,3]上的最大值和最小值;
(2)設(shè)曲線y=f(x)與x軸正半軸的交點(diǎn)為P處的切線方程為y=g(x),求證:對于任意的正實(shí)數(shù)x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義“函數(shù)y=f(x)是D上的a級類周期函數(shù)”如下:函數(shù)y=f(x),x∈D,對于給定的非零常數(shù) a,總存在非零常數(shù)T,使得定義域D內(nèi)的任意實(shí)數(shù)x都有af(x)=f(x+T)恒成立,此時(shí)T為f(x)的周期.若y=f(x)是[1,+∞)上的a級類周期函數(shù),且T=1,當(dāng)x∈[1,2)時(shí),f(x)=2x+1,且y=f(x)是[1,+∞)上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{5}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.梯形ABCD中AB∥CD,對角線AC,BD交于P1,過P1作AB的平行線交BC于點(diǎn)Q1,AQ1交BD于P2,過P2作AB的平行線交BC于點(diǎn)Q2,….,若AB=a,CD=b,則PnQn=$\frac{ab}{a+nb},n∈N*$(用a,b,n表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,E是邊長為2的正方形ABCD的AB邊的中點(diǎn),將△AED與△BEC分別沿ED、EC折起,使得點(diǎn)A與點(diǎn)B重合,記為點(diǎn)P,得到三棱錐P-CDE.
(Ⅰ)求證:平面PED⊥平面PCD;
(Ⅱ)求點(diǎn)P到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A、B、C所對的邊分別為a、b、c,設(shè)向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(cosC,cosA).
(1)若$\overrightarrow{m}$∥$\overrightarrow{n}$,a=$\sqrt{3}$c,求角A;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=3bsinB,cosA=$\frac{3}{5}$,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,已知△OAB,若點(diǎn)C滿足$\overrightarrow{AC}=2\overrightarrow{CB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,則$\frac{1}{λ}+\frac{1}{μ}$=
( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x|2x-5>0},B={x|x2-4x+3≤0},則A∩B=(  )
A.(1,$\frac{5}{2}$)B.[1,$\frac{5}{2}$)C.($\frac{5}{2}$,3)D.($\frac{5}{2}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某班有6名班干部,其中男生4人,女生2人,任選3人參加學(xué)校組織的義務(wù)植樹活動.
(I) 求男生甲、女生乙至少有1人被選中的概率;
(II) 設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P (A)和P (B|A).

查看答案和解析>>

同步練習(xí)冊答案