分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)設出p的坐標,表示出切線方程,令F(x)=f(x)-g(x),根據(jù)函數(shù)的單調性證明即可.
解答 解:(1)由f(x)=3x-x3,可得f′(x)=3(1-x2),
令f′(x)=0,解得x=1,或x=-1;
當x變化時,f'(x)的變化情況如下表:
x | (-∞,-1) | (-1,1) | (1,+∞) |
f′(x) | - | + | - |
點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及轉化思想,是一道綜合題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1丈3尺 | B. | 5丈4尺 | C. | 9丈2尺 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2個 | B. | 4個 | C. | 8個 | D. | 16個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{2}{5}+\frac{4}{5}$i | B. | $\frac{2}{5}+\frac{4}{5}$i | C. | $\frac{2}{5}-\frac{4}{5}$i | D. | -$\frac{2}{5}-\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-5,5] | B. | [-5$\sqrt{2}$,5$\sqrt{2}$] | C. | [-10,10] | D. | [-10$\sqrt{2}$,10$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}-1$ | B. | $-\frac{{\sqrt{3}}}{2}+1$ | C. | $\frac{{\sqrt{3}}}{2}-1$ | D. | $\frac{{\sqrt{3}}}{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com