分析 設|AF1|=t,則|AB|=t,|F1B|=$\sqrt{2}$t,由橢圓定義有|AF1|+|AB|+|F1B|=4a,求得|AF2|關于t的表達式,進而利用韋達定理可求得a和c的關系
解答 解:設|AF1|=t,則|AB|=t,|F1B|=$\sqrt{2}$t,由橢圓定義有:|AF1|+|AF2|=|BF1|+|BF2|=2a
∴|AF1|+|AB|+|F1B|=4a,
化簡得($\sqrt{2}$+2)t=4a,t=(4-2$\sqrt{2}$)a
∴|AF2|=2a-t=(2$\sqrt{2}$-2)a
在Rt△AF1F2中,|F1F2|2=(2c)2
∴[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2
∴($\frac{c}{a}$)2=9-6$\sqrt{2}$=($\sqrt{6}$-$\sqrt{2}$),
∴e=$\sqrt{6}$-$\sqrt{2}$,
故答案為:$\sqrt{6}$-$\sqrt{2}$.
點評 本題主要考查了橢圓的簡單性質,考查了學生對橢圓定義的理解和運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
單價x(元) | 3.0 | 3.2 | 3.4 | 3.6 | 3.8 | 4.0 |
銷量y(瓶) | 50 | 44 | 43 | 40 | 35 | 28 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\sqrt{7}$ | C. | $4\sqrt{7}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{4}$e3,0) | B. | [-$\frac{1}{2}$e,0) | C. | [-$\frac{1}{4}$e3,$\frac{e}{2}$) | D. | [-$\frac{1}{4}$e3,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{5}{4}$ | C. | 1 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com