14.已知集合M={x|x2-6x+5<0,x∈Z},N={1,2,3,4,5},則M∩N=( 。
A.{1,2,3,4}B.{2,3,4,5}C.{2,3,4}D.{1,2,4,5}

分析 先分別求出集合M和N,由此利用交集定義能求出M∩N.

解答 解:∵集合M={x|x2-6x+5<0,x∈Z}={2,3,4},
N={1,2,3,4,5},
∴M∩N={2,3,4}.
故選:C.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題,注意交集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}是等比數(shù)列,其公比為2,設(shè)bn=log2an,且數(shù)列{bn}的前10項的和為25,那么a1+a2+a3+…+a10的值為$\frac{1023}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>c)的左、右焦點分別為F1(-c,0)、F2(c,0),過原點O的直線(與x軸不重合)與橢圓C相交于D、Q兩點,且|DF1|+|QF1|=4,P為橢圓C上的動點,△PF1F2的面積的最大值為$\sqrt{3}$.
(1)求橢圓C的離心率;
(2)若A、B是橢圓C上關(guān)于x軸對稱的任意兩點,設(shè)點N(-4,0),連接NA與橢圓C相交于點E,直線BE與x軸相交于點M,試求$\frac{N{F}_{2}}{M{F}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將函數(shù)f(x)=sinx的圖象向右平移$\frac{π}{3}$個單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xOy中,焦點在x軸上的橢圓C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1經(jīng)過點(b,2e),其中e為橢圓C的離心率.過點T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點O且平行于l的直線交橢圓C于點M,N,求 $\frac{AT•BT}{MN2}$ 的值;
(3)記直線l與y軸的交點為P.若$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2017年郴州市兩會召開前夕,某網(wǎng)站推出兩會熱點大型調(diào)查,調(diào)查數(shù)據(jù)表明,民生問題是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占80%,現(xiàn)從參與者中隨機選出200人,并將這200人按年齡分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),得到的頻率分布直方圖如圖所示:
(Ⅰ)求出頻率分布直方圖中a的值,并求出這200人的平均年齡;
(Ⅱ)現(xiàn)在要從年齡較小的第1組和第2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人贈送禮品,求抽取的2人中至少有人年齡在第1組的概率;
(Ⅲ)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中不關(guān)注民生問題的人中老年人有10人,根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認為關(guān)注民生問題與年齡有關(guān)?
關(guān)注民生不關(guān)注民生合計
青少年組90                     30                             120                     
中老年組701080
合計16040200
附:
p(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AA1=AB=2,E,F(xiàn)分別是CC1,BC的中點.
(1)求證:平面AB1F⊥平面AEF;
(2)求點C到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖一所示,由弧AB,弧AC,弧BC所組成的圖形叫做勒洛三角形,它由德國機械工程專家、機械運動學(xué)家勒洛首先發(fā)現(xiàn)的,它的構(gòu)成如圖二所示,以正三角形ABCd的每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,由三段弧所圍成的曲邊三角形即為勒洛三角形,有一個如圖一所示的靶子,某人向靶子射出一箭,若此箭一定能射中靶子且射中靶子中的任意一點是等可能的,則此箭恰好射中三角形ABC內(nèi)部(即陰影部分)的概率為(  )
A.$\frac{\sqrt{3}}{2π-\sqrt{3}}$B.$\frac{\sqrt{3}}{2(π-\sqrt{3}})$C.$\frac{2π-3\sqrt{3}}{2(π-\sqrt{3})}$D.$\frac{2π-2\sqrt{3}}{2π-\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用秦九韶算法計算多項式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4時的值時,運算總次數(shù)為(  )
A.11B.12C.26D.27

查看答案和解析>>

同步練習(xí)冊答案