【題目】對于某種類型的口服藥,口服小時后,由消化系統(tǒng)進(jìn)入血液中藥物濃度(單位)與時間小時的關(guān)系為,其中,為常數(shù),對于某一種藥物,,.
(1)口服藥物后______小時血液中藥物濃度最高;
(2)這種藥物服藥小時后血液中藥物濃度如下表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
0.9545 | 0.9304 | 0.6932 | 0.4680 | 0.3010 | 0.1892 | 0.1163 | 0.072 |
一個病人上午8:00第一次服藥,要使得病人血液中藥物濃度保持在0.5個單位以上,第三次服藥時間是______(時間以整點為準(zhǔn))
【答案】 15:00
【解析】
根據(jù)題意,代入?yún)?shù)后可得解析式,結(jié)合二次函數(shù)性質(zhì)即可求得最大值及取最大值時自變量的值;由所給數(shù)據(jù),滿足病人血液中藥物濃度保持在0.5個單位以上的條件,即可得解.
藥物濃度(單位)與時間小時的關(guān)系為,對于某一種藥物,,.
代入可得
,
所以當(dāng),即時取得最大值;
由表中數(shù)據(jù)可知,病人上午8:00第一次服藥,要使得病人血液中藥物濃度保持在0.5個單位以上,則第二次服藥時間在11:00;第一次服藥后7個小時后藥物殘留為0.1163,第二次服藥后4小時的藥物殘留為0.4680,而.
第一次服藥后8小時的藥物殘留為0.072,第二次服藥后4小時的藥物殘留為0.3010,而;
綜上可知,若使得病人血液中藥物濃度保持在0.5個單位以上,則第三次服藥時間為第一次服藥后的7小時,即為15:00.
故答案為:;15:00.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為2的正方形,平面,且.
(Ⅰ)求證:平面平面;
(Ⅱ)線段上是否存在一點,使二而角等于45°?若存在,請找出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形ABCD為平行四邊形,且,,平面PAC.
(1)求證:平面;
(2)若異面直線PC與AD所成的角為30°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,橢圓上一點與兩焦點構(gòu)成的三角形的周長為6,離心率為,
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線交橢圓于兩點,問在軸上是否存在定點,使得為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是一個單調(diào)遞增的等比數(shù)列,是一個等差數(shù)列,是的前項和,其中,,成等差數(shù)列,.
(1)求的通項公式;
(2)若,,既成等比數(shù)列,又成等差數(shù)列.
(i)求的通項公式;
(ii)對于數(shù)列,若且,或且,則為數(shù)列的轉(zhuǎn)折點,求的轉(zhuǎn)折點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補原理給出了這個問題的一般解法:如圖1,用對角線將長和寬分別為和的矩形分成兩個直角三角形,每個直角三角形再分成一個內(nèi)接正方形(黃)和兩個小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點,作直角三角形的內(nèi)接正方形對角線,過點作于點,則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com