【題目】如圖,是邊長為2的正方形,平面,且

(Ⅰ)求證:平面平面

(Ⅱ)線段上是否存在一點,使二而角等于45°?若存在,請找出點的位置;若不存在,請說明理由.

【答案】(Ⅰ)詳見解析;(Ⅱ)存在點,當時,二面角所成角為

【解析】

(Ⅰ)要證得結論只需證得平面即可,根據(jù)線面垂直判定定理可證得結論;

(Ⅱ)以為坐標原點建立空間直角坐標系,假設線段上存在一點滿足題意,利用二面角的向量求法可構造方程求得點坐標,得到的長.

(Ⅰ)平面,平面平面,

,,

,,平面,平面

平面,平面平面

(Ⅱ)如圖所示,以為坐標原點建立空間直角坐標系,

,,,,

,

假設線段上存在一點滿足題意,設,

平面,平面的一個法向量

設平面的一個法向量為,而,,

,令,則,,

若二面角所成角為,,解得:,

存在點,當時,二面角所成角為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標點xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ6.

1A為曲線C1上的動點,點M在線段OA上,且滿足|OM||OA|36,求點M的軌跡C2的直角坐標方程;

2)點E的極坐標為(4,),點F在曲線C2上,求△OEF面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形,平面,且,,.

1)求證:平面平面;

2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,,設,.

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,求實數(shù)的最小值;

(Ⅲ)當時,給出一個新數(shù)列,其中,設這個新數(shù)列的前項和為,若可以寫成,,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,將曲線繞極點順時針旋轉后得到曲線的曲線記為.

1)求曲線的極坐標方程;

2)設的交點為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經(jīng)濟收入.紫甘薯對環(huán)境溫度要求較高,根據(jù)以往的經(jīng)驗,隨著溫度的升高,其死亡株數(shù)成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數(shù):

經(jīng)計算: , , , ,其中分別為試驗數(shù)據(jù)中的溫度和死亡株數(shù), .

(1)若用線性回歸模型,求關于的回歸方程(結果精確到);

(2)若用非線性回歸模型求得關于的回歸方程為,且相關指數(shù)為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(shù)(結果取整數(shù)).

附:對于一組數(shù)據(jù), ,…… ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數(shù)為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名數(shù)學家劉徽的杰作《九章算術注》是中國最寶貴的數(shù)學遺產(chǎn)之一,書中記載了他計算圓周率所用的方法.先作一個半徑為1的單位圓,然后做其內接正六邊形,在此基礎上做出內接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術”.現(xiàn)設單位圓的內接正邊形的一邊為,點為劣弧的中點,則是內接正邊形的一邊,現(xiàn)記,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于某種類型的口服藥,口服小時后,由消化系統(tǒng)進入血液中藥物濃度(單位)與時間小時的關系為,其中,為常數(shù),對于某一種藥物,,

1)口服藥物后______小時血液中藥物濃度最高;

2)這種藥物服藥小時后血液中藥物濃度如下表

1

2

3

4

5

6

7

8

0.9545

0.9304

0.6932

0.4680

0.3010

0.1892

0.1163

0.072

一個病人上午800第一次服藥,要使得病人血液中藥物濃度保持在0.5個單位以上,第三次服藥時間是______(時間以整點為準)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且為常數(shù)).

1)若函數(shù)的圖象在處的切線的斜率為為自然對數(shù)的底數(shù)),求的值;

2)若函數(shù)在區(qū)間上單調遞增,求的取值范圍;

3)已知,且.求證:

查看答案和解析>>

同步練習冊答案