9.在如圖所示的正方形中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分(曲線C的方程為x2-y=0)的點(diǎn)的個(gè)數(shù)的估計(jì)值為(  )
A.5000B.6667C.7500D.7854

分析 由題意,陰影部分的面積S=${∫}_{0}^{1}(1-{x}^{2})dx$=$(x-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{2}{3}$,正方形的面積為1,利用正方形中隨機(jī)投擲10000個(gè)點(diǎn),即可得出結(jié)論.

解答 解:由題意,陰影部分的面積S=${∫}_{0}^{1}(1-{x}^{2})dx$=$(x-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{2}{3}$,正方形的面積為1,
∵正方形中隨機(jī)投擲10000個(gè)點(diǎn),
∴落入陰影部分(曲線C的方程為x2-y=0)的點(diǎn)的個(gè)數(shù)的估計(jì)值為10000×$\frac{2}{3}$≈6667,
故選B.

點(diǎn)評(píng) 本題考查概率的計(jì)算,涉及定積分求面積,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線的漸近線方程為y=±$\frac{3}{4}$x,則此雙曲線的( 。
A.焦距為10B.實(shí)軸長與虛軸長分別為8與6
C.離心率e只能是$\frac{5}{4}$或$\frac{5}{3}$D.離心率e不可能是$\frac{5}{4}$或$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.5B.$\frac{16}{3}$C.7D.$\frac{17}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)p:x<4,q:1<x<4,則p是q成立的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-n(n∈N*).
(1)求證:數(shù)列{an+1}成等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在連續(xù)三項(xiàng)可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的三項(xiàng);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\vec a=({1,3})$,$\vec b=({-2,k})$,且$({\vec a+2\vec b})∥({3\vec a-\vec b})$,則實(shí)數(shù)k=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)寫出直線l與曲線C交點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,它是形成霧霾的原因之一.PM2.5日均值越小,空氣質(zhì)量越好.2012年2月29日,國家環(huán)保部發(fā)布的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》見表:
PM2.5日均值k(微克)空氣質(zhì)量等級(jí)
k≤35一級(jí)
35<k≤75二級(jí)
k>75超標(biāo)
針對日趨嚴(yán)重的霧霾情況,各地環(huán)保部門做了積極的治理.馬鞍山市環(huán)保局從市區(qū)2015年11月~12月和2016年11月~12月的PM2.5檢測數(shù)據(jù)中各隨機(jī)抽取9天的數(shù)據(jù)來分析治理效果.樣本數(shù)據(jù)如莖葉圖所示(十位為莖,個(gè)位為葉)
(Ⅰ)分別求兩年樣本數(shù)據(jù)的中位數(shù)和平均值,并以此推斷2016年11月~12月的空氣質(zhì)量是否比2015年同期有所提高?
(Ⅱ)在2015年的9個(gè)樣本數(shù)據(jù)中隨機(jī)抽取兩天的數(shù)據(jù),求這兩天空氣質(zhì)量均超標(biāo)的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線與拋物線${C_2}:{y^2}=2px({p>0})$交于點(diǎn)O,A,B,若△OAB的垂心為C2的焦點(diǎn),則C1的離心率為( 。
A.$\frac{3}{2}$B.$\sqrt{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案