【題目】已知是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________

【答案】

【解析】

先推出fx)的圖象關(guān)于直線xa對稱,然后得出直線PA,PB分別與函數(shù)圖象相切時,的最小值為0,再通過導(dǎo)數(shù)的幾何意義得切線的斜率,解出a1,結(jié)合圖象可得x1時,fx)的最大值為

解:AB是函數(shù)fx(其中a0)圖象上的兩個動點,

xa時,fx)=f2ax)=﹣e2ax)﹣2a=﹣ex,

∴函數(shù)fx)的圖象關(guān)于直線xa對稱.

當點AB分別位于分段函數(shù)的兩支上,

且直線PA,PB分別與函數(shù)圖象相切時,的最小值為0,

設(shè)PAfx)=﹣ex相切于點Ax0,y0),

f′(x)=ex,∴kAPf′(x0)=e,解得x0a1,

的最小值為0,∴

kPAtan45°=1,∴e1,∴x00,

a1,∴fxmax

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)的圖象,且圖象的最高點為;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定

1)求點M的坐標;

2)應(yīng)如何設(shè)計,才能使折線段賽道MNP最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exgx)=42,若在[0,+∞)上存在x1,x2,使得fx1)=gx2),則x2x1的最小值是(   )

A.1+ln2B.1ln2C.D.e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,,點E在線段BD上,且BD=3BE,過點E作圓O的截面,則所得截面圓面積的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相。現(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學一次隨機抽取一件作為禮物,甲同學喜歡馬、牛,乙同學喜歡馬、龍、狗,丙同學除了鼠不喜歡外其他的都喜歡,則這三位同學抽取的禮物都喜歡的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值若該項質(zhì)量指標值落在(195,210]內(nèi),則為合格品,否則為不合格品1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖

1:乙流水線樣本頻率分布直方圖

1:甲流水線樣本頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

(190,195]

9

(195,200]

10

(200205]

17

(205,210]

8

(210,215]

6

1)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù)和平均數(shù)(估算平均數(shù)時,同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);

2)若將頻率視為概率,某個月內(nèi)甲、乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出的不合格品約多少件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中錯誤的是(

A.命題,則的逆否命題是,則

B.的充分條件

C.命題,則方程有實根的逆命題是真命題

D.命題,則的否命題是,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)P為橢圓1ab0)上任一點,F1、F2為橢圓的焦點,|PF1|+|PF2|4,離心率為

1)求橢圓的方程;

2)若直線lykx+m≠0)與橢圓交于A、B兩點,若線段AB的中點C的直線yx上,O為坐標原點.求△OAB的面積S的最大值.

查看答案和解析>>

同步練習冊答案