【題目】如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)的圖象,且圖象的最高點為;賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定

1)求點M的坐標;

2)應如何設計,才能使折線段賽道MNP最長?

【答案】(1) (2) 設計為時,折線段賽道MNP最長.

【解析】

1利用圖象分別求得周期和的值,進而求得最后得到函數(shù)解析式,即可求得的坐標

2)設,利用正弦定理表示出,,即可表示出,用兩角和差的正弦公式化簡,根據(jù)三角函數(shù)的性質(zhì)求得最大值.

解:(1)由題意知,

,∴

時,,

2)連接MP,如圖所示.

又∵,∴

中,

,則,

,

,

,

∴當時,折線段賽道MNP最長.

所以將設計為時,折線段賽道MNP最長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知橢圓的離心率是,斜率不為0的直線相交于、兩點,與軸相交于點.

1)若、分別是的左、右焦點,當經(jīng)過時,求的值;

2)試探究,是否存在點,使得?若存在,請寫出滿足條件的、的關系式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱中,,,的中點,上一點,且.

(Ⅰ)證明:平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】水車在古代是進行灌溉引水的工具,是人類的一項古老的發(fā)明,也是人類利用自然和改造自然的象征.如圖是一個半徑為R的水車,一個水斗從點A(3,-3)出發(fā),沿圓周按逆時針方向勻速旋轉(zhuǎn),且旋轉(zhuǎn)一周用時60秒.經(jīng)過t秒后,水斗旋轉(zhuǎn)到P點,設P的坐標為(x,y),其縱坐標滿足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).則下列敘述錯誤的是(  )

A.R=6,ω=,φ=-

B.當t∈[35,55]時,點P到x軸的距離的最大值為6

C.當t∈[10,25]時,函數(shù)y=f(t)單調(diào)遞減

D.當t=20時,|PA|=6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)試討論函數(shù)的單調(diào)區(qū)間;

2)若不等式對于任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)=[]

若曲線y= fx在點(1,處的切線與軸平行a;

x=2處取得極小值a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過點.

(1)求橢圓的方程;

(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,、,,點在橢圓上,為原點.

,,求橢圓的離心率;

若橢圓的右頂點為,短軸長為2,且滿足為橢圓的離心率).

求橢圓的方程;

設直線與橢圓相交于兩點,若的面積為1,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

同步練習冊答案