1.將4名同學(xué)隨機分成兩組參加數(shù)學(xué)、英語競賽,每組2人,則甲參加數(shù)學(xué)競賽且乙參加英語競賽的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

分析 設(shè)其他兩名同學(xué)為丙和丁,4人分組參賽分組的情況共有6種,甲參加數(shù)學(xué)競賽且乙參加英語競賽的情況占2種,由此能求出甲參加數(shù)學(xué)競賽且乙參加英語競賽的概率.

解答 解:設(shè)其他兩名同學(xué)為丙和丁,4人分組參賽的所有情況如下表:

 競賽 1 2 3 4 5 6
 數(shù)學(xué) 甲乙 甲丙 甲丁 乙丙 乙丁 丙丁
 英語 丙丁 乙丁 乙丙 甲丁 甲丙 甲乙
分組的情況共有6種,甲參加數(shù)學(xué)競賽且乙參加英語競賽的情況占2種,
所以甲參加數(shù)學(xué)競賽且乙參加英語競賽的概率是${P}=\frac{2}{6}=\frac{1}{3}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z=$\frac{1}{1-i}$的實部是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M,N滿足M∪N={1,2,3},M∩N={a},則( 。
A.a=1B.a=2C.a=3D.a∈M∪N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點 P(x,y)為平面區(qū)域$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$內(nèi)的一個動點,z=|x+y|,若對滿足條件的任意點 P都有z≤3,則k的取值范圍是(  )
A.[-1,1]B.(-∞,1]C.[0,3]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,滿足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線上,O為直線AB外一點,記數(shù)列{an}的前n項和為Sn,則S2015的值為( 。
A.$\frac{2015}{2}$B.2015C.2016D.2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的三視圖如圖所示,其中正視圖是邊長為1的正方形,俯視圖由兩個邊長為1的正方形組成,則此幾何體的體積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{i^8}{1-i}$(其中i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等差數(shù)列{an}的公差為d(d<0),ai∈{1,-2,3,-4,5}(i=1,2,3),則數(shù)列{bn}中,b1=1,點Bn(n,bn)在函數(shù)g(x)=a•2x(a是常數(shù))的圖象上.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)若cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=$|\begin{array}{l}{-x}&{3}&{1}&{3}\\{x}&{3}&{2x}&{11}\\{-1}&{x}&{0}&{4}\\{2}&{21}&{4}&{x}\end{array}|$,則f(x)中x4的系數(shù)為3.

查看答案和解析>>

同步練習(xí)冊答案