12.在極坐標(biāo)系中,已知圓C的圓心C(3,$\frac{π}{9}$),半徑為1.Q點(diǎn)在圓周上運(yùn)動(dòng),O為極點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)若P在直線OQ上運(yùn)動(dòng),且滿足$\frac{OQ}{QP}$=$\frac{2}{3}$,求動(dòng)點(diǎn)P的軌跡方程.

分析 (1)設(shè)M(ρ,θ)為圓C上任意一點(diǎn),由余弦定理,得1=ρ2+9-2•ρ•3•cos($θ-\frac{π}{6}$),由此能求出圓C的軌跡方程.
(2)設(shè)Q(ρ1,θ1),則${{ρ}_{1}}^{2}$-6•ρ1cos(${θ}_{1}-\frac{π}{6}$)+8=0,設(shè)P(ρ,θ),則OQ:QP=ρ1:(ρ-ρ1)=2:3,由此能求出P點(diǎn)的軌跡方程.

解答 解:(1)設(shè)M(ρ,θ)為圓C上任意一點(diǎn),
如圖,在△OCM中,|OC|=3,|OM|=ρ,|CM|=1,∠COM=|$θ-\frac{π}{6}$|,
根據(jù)余弦定理,得1=ρ2+9-2•ρ•3•cos($θ-\frac{π}{6}$),
化簡整理,得ρ2-6•ρcos($θ-\frac{π}{6}$)+8=0為圓C的極坐標(biāo)方程.
(2)設(shè)Q(ρ1,θ1),
則有${{ρ}_{1}}^{2}$-6•ρ1cos(${θ}_{1}-\frac{π}{6}$)+8=0,①
設(shè)P(ρ,θ),則OQ:QP=ρ1:(ρ-ρ1)=2:3,解得ρ1=$\frac{2}{5}$ρ,
又θ1=θ,即$\left\{\begin{array}{l}{{ρ}_{1}=\frac{2}{5}ρ}\\{{θ}_{1}=θ}\end{array}\right.$,
代入①得$\frac{4}{25}$ρ2-6•$\frac{2}{5}$ρcos(θ-$\frac{π}{6}$)+8=0,
整理得ρ2-15ρcos($θ-\frac{5π}{6}$)+50=0為P點(diǎn)的軌跡方程.

點(diǎn)評 本題考查圓的極坐標(biāo)方程的求法,考查點(diǎn)的軌跡坐標(biāo)方程的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三內(nèi)角A、B、C的對邊分別為a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若c=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an +1,an+12=bnbn+1
(Ⅰ)求 a 2,a3,a4 及b2,b3,b4;
(Ⅱ)猜想{an },{bn} 的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅲ)證明:對所有的 n∈N*,$\frac{{a}_{1}}{_{1}}$•$\frac{{a}_{3}}{_{3}}$•…•$\frac{{a}_{2n-1}}{_{2n-1}}$<$\sqrt{\frac{_{n}-{a}_{n}}{_{n}+{a}_{n}}}$<$\sqrt{2}$sin$\frac{1}{{\sqrt{2\sqrt{b_n}-1}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.根據(jù)預(yù)測,某地第n(n∈N*)個(gè)月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an=$\left\{\begin{array}{l}5{n^4}+15{,_{\;}}1≤n≤3\\-10n+470{,_{\;}}n≥4\end{array}$,bn=n+5,第n個(gè)月底的共享單車的保有量是前n個(gè)月的累計(jì)投放量與累計(jì)損失量的差.
(1)求該地區(qū)第4個(gè)月底的共享單車的保有量;
(2)已知該地共享單車停放點(diǎn)第n個(gè)月底的單車容納量Sn=-4(n-46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達(dá)到最大,問該保有量是否超出了此時(shí)停放點(diǎn)的單車容納量?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在極坐標(biāo)系中,曲線ρ=4sin(θ-$\frac{π}{4}$)(ρ∈R)關(guān)于( 。
A.直線θ=$\frac{π}{3}$成軸對稱B.直線θ=$\frac{3π}{4}$成軸對稱
C.點(diǎn)(2,$\frac{π}{3}$)成中心對稱D.極點(diǎn)成中心對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z=$\frac{\sqrt{3}+i}{2i}$,$\overline{z}$是z的共軛復(fù)數(shù),則z•$\overline{z}$=( 。
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xoy中,已知直線$l:x=\frac{{\sqrt{3}}}{3}y+2$,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出直線l的極坐標(biāo)方程;
(2)設(shè)直線l與曲線$\left\{\begin{array}{l}x={m^2}\\ y=2m\end{array}\right.$(m為參數(shù))相交于A,B兩點(diǎn),求點(diǎn)P(2,0)到兩點(diǎn)A,B的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C的極坐標(biāo)方程是ρ2=4ρcosθ+6ρsinθ-12,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{1}{2}t}\\{y=1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(I)寫出直線l的一般方程與曲線C的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線C向左平移2個(gè)單位長度,向上平移3個(gè)單位長度,得到曲線D,設(shè)曲線D經(jīng)過伸縮變換$\left\{\begin{array}{l}x'=x\\ y'=2y\end{array}\right.$得到曲線E,設(shè)曲線E上任一點(diǎn)為M(x,y),求$\sqrt{3}x+\frac{1}{2}y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求θ.

查看答案和解析>>

同步練習(xí)冊答案