13.根據(jù)預(yù)測(cè),某地第n(n∈N*)個(gè)月共享單車(chē)的投放量和損失量分別為an和bn(單位:輛),其中an=$\left\{\begin{array}{l}5{n^4}+15{,_{\;}}1≤n≤3\\-10n+470{,_{\;}}n≥4\end{array}$,bn=n+5,第n個(gè)月底的共享單車(chē)的保有量是前n個(gè)月的累計(jì)投放量與累計(jì)損失量的差.
(1)求該地區(qū)第4個(gè)月底的共享單車(chē)的保有量;
(2)已知該地共享單車(chē)停放點(diǎn)第n個(gè)月底的單車(chē)容納量Sn=-4(n-46)2+8800(單位:輛).設(shè)在某月底,共享單車(chē)保有量達(dá)到最大,問(wèn)該保有量是否超出了此時(shí)停放點(diǎn)的單車(chē)容納量?

分析 (1)計(jì)算出{an}和{bn}的前4項(xiàng)和的差即可得出答案;
(2)令an≥bn得出n≤42,再計(jì)算第42個(gè)月底的保有量和容納量即可得出結(jié)論.

解答 解:(1)∵an=$\left\{\begin{array}{l}5{n^4}+15{,_{\;}}1≤n≤3\\-10n+470{,_{\;}}n≥4\end{array}$,bn=n+5
∴a1=5×14+15=20
a2=5×24+15=95
a3=5×34+15=420
a4=-10×4+470=430
b1=1+5=6
b2=2+5=7
b3=3+5=8
b4=4+5=9
∴前4個(gè)月共投放單車(chē)為a1+a2+a3+a4=20+95+420+430=965,
前4個(gè)月共損失單車(chē)為b1+b2+b3+b4=6+7+8+9=30,
∴該地區(qū)第4個(gè)月底的共享單車(chē)的保有量為965-30=935.
(2)令an≥bn,顯然n≤3時(shí)恒成立,
當(dāng)n≥4時(shí),有-10n+470≥n+5,解得n≤$\frac{465}{11}$,
∴第42個(gè)月底,保有量達(dá)到最大.
當(dāng)n≥4,{an}為公差為-10等差數(shù)列,而{bn}為等差為1的等比數(shù)列,
∴到第42個(gè)月底,單車(chē)保有量為$\frac{{a}_{4}+{a}_{42}}{2}$×39+535-$\frac{_{1}+_{42}}{2}$×42=$\frac{430+50}{2}$×39+535-$\frac{6+47}{2}$×42=8782.
S42=-4×16+8800=8736.
∵8782>8736,
∴第42個(gè)月底單車(chē)保有量超過(guò)了容納量.

點(diǎn)評(píng) 本題考查了數(shù)列模型的應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知復(fù)數(shù)z=(m2-3m+2)+(2m2-3m-2)i.
(Ⅰ)當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:①實(shí)數(shù);②虛數(shù);③純虛數(shù);
(Ⅱ)在復(fù)平面內(nèi),若復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在第四象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=x2-ln(2x)的單調(diào)增區(qū)間是( 。
A.(0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,+∞]C.(-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$)D.[-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.命題“存在一個(gè)無(wú)理數(shù),它的平方是有理數(shù)”的否定是( 。
A.存在一個(gè)有理數(shù),它的平方是有理數(shù)
B.存在一個(gè)無(wú)理數(shù),它的平方不是有理數(shù)
C.任意一個(gè)無(wú)理數(shù),它的平方不是有理數(shù)
D.任意一個(gè)有理數(shù),它的平方是有理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若排列數(shù)${P}_{6}^{m}$=6×5×4,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)當(dāng)m=2時(shí),求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程.
(2)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調(diào)性;
(3)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在極坐標(biāo)系中,已知圓C的圓心C(3,$\frac{π}{9}$),半徑為1.Q點(diǎn)在圓周上運(yùn)動(dòng),O為極點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)若P在直線OQ上運(yùn)動(dòng),且滿足$\frac{OQ}{QP}$=$\frac{2}{3}$,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.將由直線y=x2與直線x=1以及x軸圍成的封閉圖形繞x軸旋轉(zhuǎn)一周形成的幾何體的體積為$\frac{π}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上且周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x-1,則f(0)=0,f($\frac{5}{2}$)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案