己知tanα=3,求
sinα-cosα
3sinα+4cosα
的值.
考點:三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:把所求的式子分子分母都除以cosα,利用同角三角函數(shù)間的基本關系化為關于tanα的關系式,把tanα的值代入即可求出值;
解答: 解:由tanα=3,
sinα-cosα
3sinα+4cosα
=
tanα-1
3tanα+4
=
3-1
9+4
=
2
13
點評:本題考查三角函數(shù)的化簡求值,同角三角函數(shù)的基本關系式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A={x|-2<x<4},B={y|y=|x+1|,x∈A},則A∩B=(  )
A、∅
B、{x|1<x<4}
C、{x|-2<x<5}
D、{x|0≤x<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1,P在BD1上,過P作垂直于BD1的平面α,記這樣得到的截面多邊形(含三角形)周長為y,為什么當α在平面AB1C,面A1DC1之間運動時,y不變?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2
-arctanx(x∈R)的反函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在半徑為5的圓中,圓心角為周長的
2
3
的角所對圓弧的長是( 。
A、
3
B、
20π
3
C、
10π
3
D、
50π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:
(1)2 x2-2x>(
1
2
2-x,
(2)(
1
π
2x+3≤π x2-7x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在約束條件
x≤1
x-y+m2≥0
x+y-1≥0
下,若目標函數(shù)z=-2x+y的最大值不超過4,則實數(shù)m的取值范圍(  )
A、(-
3
,
3
B、[0,
3
]
C、[-
3
,0]
D、[-
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二面角α-l-β的大小為45°,線段AB?α,B∈l,AB與l所成角為45°,則AB與β所成角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,平面四邊形ABCD中,AB=AD=CD=1,BD=
2
,
BD⊥CD,將其沿對角線BD折成四面體A-BCD,使平面ABD⊥平面BCD,則下列說法中不正確的是( 。
A、平面ACD⊥平面ABD
B、AB⊥CD
C、平面ABC⊥平面ACD
D、AD⊥平面ABC

查看答案和解析>>

同步練習冊答案