【題目】已知函數(shù)
(Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若g(x)= +在1,+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
【答案】(Ⅰ)的單調(diào)遞增區(qū)間是(1,+∞), 的單調(diào)遞減區(qū)間是(0, 1).
(Ⅱ)實數(shù)a的取值范圍0,+∞)
【解析】試題分析:(Ⅰ)求導函數(shù),利用導數(shù)的正負,可得函數(shù)的單調(diào)遞增區(qū)間與單調(diào)遞減區(qū)間;(Ⅱ)由題意得,分函數(shù)g(x)為[1,+∞)上的單調(diào)增函數(shù)與單調(diào)減函數(shù)討論,即可確定實數(shù)a的取值范圍
試題解析:(1)由已知,函數(shù)的定義域為(0,+∞).
當a=-2時,f(x)=x2-2lnx,所以f′(x)=2x-=,
則當x∈(0,1)時,f′(x)<0,所以(0,1)為f(x)的單調(diào)遞減區(qū)間.
當x∈(1,+∞)時,f′(x)>0,(1,+∞)為f(x)的單調(diào)遞增區(qū)間.
(2)由題意得g′(x)=2x+-,函數(shù)g(x)在[1,+∞)上是單調(diào)函數(shù).
(ⅰ)若函數(shù)g(x)為[1,+∞)上的單調(diào)增函數(shù),
則g′(x)≥0在[1,+∞)上恒成立,即a≥-2x2在[1,+∞)上恒成立,
設φ(x)=-2x2,因為φ(x)在[1,+∞]上單調(diào)遞減,
所以φ(x)max=φ(1)=0,所以a≥0.
(ⅱ)若函數(shù)g(x)為[1,+∞)上的單調(diào)減函數(shù),則g′(x)≤0在[1,+∞)上恒成立,不可能.
綜上,實數(shù)a的取值范圍是[0,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線: ()的焦點,直線: 交拋物線于, 兩點.
(Ⅰ)當, 時,求拋物線的方程;
(Ⅱ)過點, 作拋物線的切線, , 交點為,若直線與直線斜率之和為,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機調(diào)查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?
(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取兩名學生參加某項活動,問兩名學生中有1名男生的概率是多少?
(3)學生的學習積極性與對待班極工作的態(tài)度是否有關系?請說明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校大一新生中的6名同學打算參加學校組織的“雅荷文學社”、“青春風街舞社”、“羽乒協(xié)會”、“演講團”、“吉他協(xié)會”五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數(shù)為( )
A. 4680 B. 4770 C. 5040 D. 5200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位需要從甲、乙人中選拔一人參加新崗位培訓,特別組織了個專項的考試,成績統(tǒng)計如下:
第一項 | 第二項 | 第三項 | 第四項 | 第五項 | |
甲的成績 | |||||
乙的成績 |
(1)根據(jù)有關統(tǒng)計知識,回答問題:若從甲、乙人中選出人參加新崗培訓,你認為選誰合適,請說明理由;
(2)根據(jù)有關槪率知識,解答以下問題:
從甲、乙人的成績中各隨機抽取一個,設抽到甲的成績?yōu)?/span>,抽到乙的成績?yōu)?/span>,用表示滿足條件的事件,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是自然對數(shù)的底數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當時,若存在,使得,求實數(shù)的取值范圍.(參考公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的離心率為,連接橢圓的四個頂點得到的四邊形的面積為.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點,求點的軌跡的方程;
(3)設為坐標原點,取上不同于的點,以為直徑作圓與相交另外一點,求該圓面積的最小值時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com