【題目】已知橢圓)的離心率為,連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)設(shè)為坐標(biāo)原點(diǎn),取上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓面積的最小值時(shí)點(diǎn)的坐標(biāo).

【答案】(1);(2);(3).

【解析】

試題分析:(1)借助題設(shè)條件建立方程組求解;(2)運(yùn)用拋物線的定義求解;(3)借助題設(shè)運(yùn)用圓與拋物線的位置關(guān)系探求.

試題解析:

(1)由,得,再由,解得……………………1分

由題意可知,即…………………………………………………2分

解方程組,……………………………………………………3分

所以橢圓的方程是……………………………………………………………4分

(2)因?yàn)?/span>,所以動點(diǎn)到定直線的距離等于它到定點(diǎn)的距離,所以動點(diǎn)的軌跡是以為準(zhǔn)線,為焦點(diǎn)的拋物線,…………………………………………6分

所以點(diǎn)的軌跡的方程為………………………………………………………7分

(3)因?yàn)橐?/span>為直徑的圓與相交于點(diǎn),所以,即8分

設(shè),

所以

因?yàn)?/span>,化簡得……………………………………9分

所以,

當(dāng)且僅當(dāng)時(shí)等號成立.…………………………10分

圓的直徑

因?yàn)?/span>,所以當(dāng)時(shí),,…………………11分

所以所求圓的面積的最小時(shí),點(diǎn)的坐標(biāo)為………………………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

)若g(x)= +1,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,底面側(cè)面分別為的中點(diǎn),且,,.

I)證明:平面;

II)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義的零點(diǎn)的不動點(diǎn),已知函數(shù).

Ⅰ.當(dāng)時(shí),求函數(shù)的不動點(diǎn);

Ⅱ.對于任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動點(diǎn),求實(shí)數(shù)的取值范圍;

Ⅲ.若函數(shù)只有一個(gè)零點(diǎn)且,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列4個(gè)命題:

①為了了解800名學(xué)生對學(xué)校某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;

②四邊形為長方形,,中點(diǎn),在長方形內(nèi)隨機(jī)取一點(diǎn),取得的點(diǎn)到的距離大于1的概率為;

③把函數(shù)的圖象向右平移個(gè)單位,可得到的圖象;

④已知回歸直線的斜率的估計(jì)值為,樣本點(diǎn)的中心為,則回歸直線方程為.

其中正確的命題有__________.(填上所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1求曲線的普通方程;

2經(jīng)過點(diǎn)平面直角坐標(biāo)系中點(diǎn)作直線交曲線兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)求證: ;

(3)求證:當(dāng)時(shí), , 恒成立.

查看答案和解析>>

同步練習(xí)冊答案