A. | $[0,\frac{π}{6}]$ | B. | $[0,\frac{π}{3}]$ | C. | $[0,\frac{π}{2}]$ | D. | $[0,\frac{2π}{3}]$ |
分析 求出兩個特殊位置,直線AD與直線BC成的角,即可得出結(jié)論.
解答 解:由題意,初始狀態(tài),直線AD與直線BC成的角為0,
DB=$\sqrt{2}$時,AD⊥DB,AD⊥DC,
∴AD⊥平面DBC,AD⊥BC,
直線AD與直線BC成的角為$\frac{π}{2}$,
∴在翻折過程中直線AD與直線BC成的角范圍(包含初始狀態(tài))為[0,$\frac{π}{2}$].
故選:C.
點評 本題考查兩直線所成的角的范圍的求法,考查學生的計算求解能力、推理論證能力、空間思維能力,考查數(shù)形結(jié)合思想、分類討論思想、轉(zhuǎn)化化歸思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1,\frac{{\sqrt{2e}}}{2e}+1)$ | B. | $(1,\frac{1}{e}+1)$ | C. | $(0,\frac{1}{2e}+1)$ | D. | $(\frac{1}{e},1)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x|+1 | B. | y=$\frac{1}{x}$ | C. | y=-x2+1 | D. | y=-x|x| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com