11.如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點(diǎn)G為AB的中點(diǎn),AB=BE=2.
(1)求證:EG∥平面ADF;
(2)設(shè)H為線段AF上的點(diǎn),且AH=$\frac{2}{3}$HF,求直線BH和平面CEF所成角的正弦值.

分析 (1)取AD的中點(diǎn)I,連接FI,證明四邊形EFIG是平行四邊形,可得EG∥FI,利用線面平行的判定定理證明:EG∥平面ADF;
(2)建立如圖所示的坐標(biāo)系O-xyz,求出平面CEF的法向量,$\overrightarrow{BH}$,利用向量的夾角公式求出直線BH和平面CEF所成角的正弦值.

解答 (1)證明:取AD的中點(diǎn)I,連接FI,
∵矩形OBEF,∴EF∥OB,EF=OB,
∵G,I是中點(diǎn),
∴GI∥BD,GI=$\frac{1}{2}$BD.
∵O是正方形ABCD的中心,
∴OB=$\frac{1}{2}$BD.
∴EF∥GI,EF=GI,
∴四邊形EFIG是平行四邊形,
∴EG∥FI,
∵EG?平面ADF,F(xiàn)I?平面ADF,
∴EG∥平面ADF;
(2)解:建立如圖所示的坐標(biāo)系O-xyz,則B(0,-$\sqrt{2}$,0),C($\sqrt{2}$,0,0),E(0,-$\sqrt{2}$,2),
F(0,0,2),
設(shè)平面CEF的法向量為$\overrightarrow{m}$=(x,y,z),則$\left\{\begin{array}{l}{\sqrt{2}y=0}\\{-\sqrt{2}x+2z=0}\end{array}\right.$,取$\overrightarrow{m}$=($\sqrt{2}$,0,1)
AH=$\frac{2}{3}$HF,∴$\overrightarrow{AH}$=($\frac{2\sqrt{2}}{5}$,0,$\frac{4}{5}$).
設(shè)H(a,b,c),則$\overrightarrow{AH}$=(a+$\sqrt{2}$,b,c)=($\frac{2\sqrt{2}}{5}$,0,$\frac{4}{5}$).
∴a=-$\frac{3\sqrt{2}}{5}$,b=0,c=$\frac{4}{5}$,
∴$\overrightarrow{BH}$=(-$\frac{3\sqrt{2}}{5}$,$\sqrt{2}$,$\frac{4}{5}$),
∴直線BH和平面CEF所成角的正弦值=|cos<$\overrightarrow{BH}$,$\overrightarrow{m}$>|=$\frac{|-\frac{6}{5}+\frac{4}{5}|}{\sqrt{3}•\sqrt{\frac{84}{25}}}$=$\frac{\sqrt{7}}{21}$.

點(diǎn)評(píng) 本題考查證明線面平行的判定定理,考查直線BH和平面CEF所成角的正弦值,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}中,a1=a,an+1=3an+8n+6,若{an)為遞增數(shù)列,則實(shí)數(shù)a的取值范圍為(-7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\overrightarrow{a}$=(sinx,-cosx),$\overrightarrow$=($\sqrt{3}$cosx,-cosx),f(x)=2$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,若f(A)=2,b=1,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為$\frac{\sqrt{3}}{2}$,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過(guò)點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,|PQ|=10.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.由動(dòng)點(diǎn)P引圓x2+y2=1兩條切線PA、PB,切點(diǎn)分別為A,B,∠APB=90°,則動(dòng)點(diǎn)P的軌跡方程為x2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.矩形ABCD中,$AB=\sqrt{3}$,BC=1,將△ABC與△ADC沿AC所在的直線進(jìn)行隨意翻折,在翻折過(guò)程中直線AD與直線BC成的角范圍(包含初始狀態(tài))為( 。
A.$[0,\frac{π}{6}]$B.$[0,\frac{π}{3}]$C.$[0,\frac{π}{2}]$D.$[0,\frac{2π}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.計(jì)算機(jī)執(zhí)行如圖的程序,輸出的結(jié)果是( 。 
A.1,3B.4,9C.4,8D.4,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值.
(2)求月平均用電量不大于220度的居民有多少戶.
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了考核某特警部隊(duì)的應(yīng)急反應(yīng)能力,擬準(zhǔn)備把特警隊(duì)員從一目標(biāo)處快速運(yùn)送到另一目標(biāo)處.通過(guò)測(cè)角儀觀測(cè)到觀測(cè)站C在目標(biāo)A南偏西25°的方向上,B、D在A出發(fā)的一條南偏東35°走向的公路上(如圖),測(cè)得C、B相距31千米,D、B相距20千米,C、D相距21千米,求A、D之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案