19.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為$\frac{\sqrt{3}}{2}$,其中A(0,-b),B(a,0).
(1)求雙曲線的標準方程;
(2)設F是雙曲線的右焦點,直線l過點F且與雙曲線的右支交于不同的兩點P、Q,|PQ|=10.求直線l的方程.

分析 (1)利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為$\frac{\sqrt{3}}{2}$,建立方程,求出a,b,即可求雙曲線的標準方程;
(2)設直線方程為y=k(x-2),代入雙曲線方程,整理可得(3-k2)x2+4k2x-(4k2+3)=0,利用韋達定理,及弦長公式,建立方程,即可求直線l的方程.

解答 解:(1)直線AB的方程為bx-ay-ab=0.
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,坐標原點到直線AB的距離為$\frac{\sqrt{3}}{2}$,
∴$\frac{{a}^{2}+^{2}}{{a}^{2}}$=4,$\frac{ab}{\sqrt{^{2}+{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,∴a=1,b=$\sqrt{3}$,
∴雙曲線的標準方程是${x}^{2}-\frac{{y}^{2}}{3}$=1;
(2)設直線方程為y=k(x-2)
代入雙曲線方程,整理可得(3-k2)x2+4k2x-(4k2+3)=0
設P(x1,y1),Q(x2,y2),則可得x1+x2=-$\frac{4{k}^{2}}{3-{k}^{2}}$,x1x2=-$\frac{4{k}^{2}+3}{3-{k}^{2}}$,
∵|PQ|=10,
∴(1+k22•[(-$\frac{4{k}^{2}}{3-{k}^{2}}$)2-4(-$\frac{4{k}^{2}+3}{3-{k}^{2}}$)]=100
解得,k=±$\frac{\sqrt{6}}{2}$,
∴直線l的方程為y=±$\frac{\sqrt{6}}{2}$(x-2).

點評 本題考查雙曲線的方程與性質(zhì),考查直線與雙曲線位置關系的運用,考查弦長的計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\overrightarrow a=(2cosx,2sinx)$,$\overrightarrow b=(sin(x-\frac{π}{6}),cos(x-\frac{π}{6}))$,函數(shù)f(x)=cos<$\overrightarrow{a}$,$\overrightarrow$>.
(Ⅰ)求函數(shù)f(x)零點;
(Ⅱ)若△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c,且f(A)=1,求$\frac{b+c}{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=sinx(cosx-\sqrt{3}sinx)$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在x∈[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|-2≤x≤1}.
(1)求a的值;
(2)如函數(shù)g(x)=f(x)-|x+1|,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項;
(2)求數(shù)列$\left\{{{2^{a_n}}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.請按要求完成下列兩題.
(Ⅰ)求由直線$x=-\frac{π}{3}$,$x=\frac{π}{3}$,y=0與曲線y=cosx所圍成的封閉圖形的面積.
(Ⅱ)求由直線y=x-4,曲線$y=\sqrt{2x}$及x軸所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,正方形ABCD的中心為O,四邊形OBEF為矩形,平面OBEF⊥平面ABCD,點G為AB的中點,AB=BE=2.
(1)求證:EG∥平面ADF;
(2)設H為線段AF上的點,且AH=$\frac{2}{3}$HF,求直線BH和平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某校從參加高一年級期末考試的學生中抽出60名學生,將其物理成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如圖頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求出物理成績低于50分的學生人數(shù);
(2)估計這次考試的平均分m與中位數(shù)n的值;
(3)設計一程序框圖,根據(jù)輸入的60名學生物理成績輸出這次考試的及格率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)為周期函數(shù),且周期為4,若在區(qū)間[-2,2]上,f(x)=$\left\{\begin{array}{l}{{2}^{x}+2m,-2≤x≤0}\\{lo{g}_{2}x-m,0<x≤2}\end{array}\right.$,則f(2017m)=( 。
A.-$\frac{9}{4}$B.-$\frac{5}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

同步練習冊答案