12.已知定義在R上的函數(shù)f(x)為周期函數(shù),且周期為4,若在區(qū)間[-2,2]上,f(x)=$\left\{\begin{array}{l}{{2}^{x}+2m,-2≤x≤0}\\{lo{g}_{2}x-m,0<x≤2}\end{array}\right.$,則f(2017m)=( 。
A.-$\frac{9}{4}$B.-$\frac{5}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

分析 利用定義在R上的函數(shù)f(x)為周期函數(shù),且周期為4,求出m,再計(jì)算f(2017m).

解答 解:因?yàn)槎x在R上的函數(shù)f(x)為周期函數(shù),且周期為4,所以f(-2)=f(2),故$\frac{1}{4}$+2m=1-m,解得m=$\frac{1}{4}$.
所以f(2017m)=f($\frac{2017}{4}$)=f($\frac{1}{4}$)=-2-$\frac{1}{4}$=-$\frac{9}{4}$.
故選A.

點(diǎn)評(píng) 本題考查函數(shù)的周期性,考查學(xué)生的計(jì)算能力,正確求出m是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為$\frac{\sqrt{3}}{2}$,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,|PQ|=10.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值.
(2)求月平均用電量不大于220度的居民有多少戶.
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)$f(x)=\frac{{\sqrt{2x-1}}}{{{x^2}+x-2}}$的定義域是$\left\{{x\left|{x≥\frac{1}{2},且x≠1}\right.}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin2x-2cos2x+1.
(1)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$)上的值域;
(2)設(shè)$α,β∈({0,\frac{π}{2}}),f({\frac{1}{2}α+\frac{π}{12}})=\frac{10}{13},f({\frac{1}{2}β+\frac{π}{3}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2+(a+1)x+(a+2)
(1)若f(x)能表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)的和,求g(x)和h(x)的解析式.
(2)命題p:函數(shù)f(x)在區(qū)間[(a+1)2,+∞)上是增函數(shù);命題q:函數(shù)g(x)是減函數(shù).如果命題¬p,p∨q都是假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了考核某特警部隊(duì)的應(yīng)急反應(yīng)能力,擬準(zhǔn)備把特警隊(duì)員從一目標(biāo)處快速運(yùn)送到另一目標(biāo)處.通過測(cè)角儀觀測(cè)到觀測(cè)站C在目標(biāo)A南偏西25°的方向上,B、D在A出發(fā)的一條南偏東35°走向的公路上(如圖),測(cè)得C、B相距31千米,D、B相距20千米,C、D相距21千米,求A、D之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD為梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分別是AD,PB的中點(diǎn).
(Ⅰ)求證:PD∥平面OCM;
(Ⅱ)若AP與平面PBD所成的角為60°,求線段PB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在正方形OABC內(nèi)任取一點(diǎn),取到函數(shù)$y=\sqrt{x}$的圖象與x軸正半軸之間
(陰影部分)的點(diǎn)的概率等于$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案