20.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 3x-y≤3\end{array}\right.$,則$z=\frac{y+2}{x+1}$的最大值為3.

分析 作出不等式組對應(yīng)平面區(qū)域,利用z的幾何意義即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
則$z=\frac{y+2}{x+1}$的幾何意義為動點P到定點Q(-1,-2)的斜率,
由圖象可知當P位于A(0,1)時,直線AQ的斜率最大,
此時z=$\frac{1+2}{0+1}$=3,
故答案為:3.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,以及直線的斜率公式是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,則¬p為( 。
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在長方體ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,點E在棱AB上移動.
(1)當AE=1時,求證:直線D1E⊥平面A1DC1;
(2)在(1)的條件下,求${V_{{C_1}-{A_1}DE}}:{V_{{C_1}-{A_1}{D_1}D}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,在由5個邊長為1,一個頂角為60°的菱形組成的圖形中,$\overrightarrow{AB}$•$\overrightarrow{CD}$=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=(1-cos2x)cos2x,x∈R,設(shè)f(x)的最大值是A,最小正周期為T,則f(AT)的值等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.當x=$\frac{π}{6}$時,函數(shù)f(x)=cos2x+sinx(|x|≤$\frac{π}{4}$)取最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合A={x|y=$\sqrt{x+1}$},B={y=|y=1-ex},則A∩B=( 。
A.[-1,1)B.[-1,1]C.(-1,1)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若直線l經(jīng)過點P(1,2),且垂直于直線2x+y-1=0,則直線l的方程是x-2y+3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.為了得到函數(shù)$y=2sin({2x-\frac{π}{3}})$的圖象,只需把函數(shù)$f(x)=2\sqrt{3}sin({x+\frac{π}{4}})cos({x+\frac{π}{4}})-sin({2x+3π})$的圖象向右平移$\frac{π}{3}$個單位長度.

查看答案和解析>>

同步練習冊答案