10.已知命題p:“?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0”,則¬p為(  )
A.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1>0
C.?x∈R,ex-x-1>0D.?x∈R,ex-x-1≥0

分析 根據(jù)特稱命題的否定是全稱命題進行判斷即可.

解答 解:命題是特稱命題,則命題的否定是全稱命題,
即¬p:?x∈R,ex-x-1>0,
故選:C

點評 本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=x(m+e-x),其中e為自然對數(shù)的底數(shù),曲線y=f(x)上存在不同的兩點,使得曲線在這兩點處的切線都與y軸垂直,則實數(shù)m的取值范圍是( 。
A.(0,e-2B.(e-2,+∞)C.(0,e2D.(e2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)A,B是非空集合,定義A*B={x|x∈A∪B且x∉A∩B},已知M={x|0≤x≤3},N={y|y≤1},則M*N=( 。
A.(1,3]B.(-∞,0)∪(1,3]C.(-∞,3]D.(-∞,0]∪[1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=|cosx|•sinx,給出下列四個說法:
①$f(\frac{2014π}{3})=-\frac{{\sqrt{3}}}{4}$;
②函數(shù)f(x)的周期為π;
③f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上單調(diào)遞增;
④f(x)的圖象關(guān)于點$(-\frac{π}{2},0)$中心對稱
其中正確說法的序號是( 。
A.②③B.①③C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若復數(shù)z滿足(1+i)z=|1-i|(i為復數(shù)單位),則 z的共軛復數(shù)為( 。
A.1+iB.1-iC.$\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2}i$D.$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知命題p:x2+2x-3>0;命題q:$\frac{1}{3-x}$>1,若“(¬q)∧p”為真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.拋物線的頂點在原點,對稱軸為y軸,拋物線上一點(x0,2)到焦點的距離為3,則拋物線方程為x2=4y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上位于第一象限的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D.
(1)若|FA|=|AD|,當點A的橫坐標為$3+2\sqrt{2}$時,△ADF為等腰直角三角形,求C的方程;
(2)對于(1)中求出的拋物線C,若點$D({{x_0},0})({{x_0}≥\frac{1}{2}})$,記點B關(guān)于x軸的對稱點為E,AE交x軸于點P,且AP⊥BP,求證:點P的坐標為(-x0,0),并求點P到直線AB的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 3x-y≤3\end{array}\right.$,則$z=\frac{y+2}{x+1}$的最大值為3.

查看答案和解析>>

同步練習冊答案