17.棱長分別為1、$\sqrt{3}$、2的長方體的8個頂點都在球O的表面上,則球O的體積為(  )
A.$\frac{8\sqrt{2}}{3}$πB.3$\sqrt{2}$πC.$\frac{7\sqrt{3}}{3}$πD.4$\sqrt{3}$π

分析 根據(jù)球的直徑是球內(nèi)接長方體的對角線長,
求出半徑R的值,再計算球的體積.

解答 解:棱長分別為1、$\sqrt{3}$、2的長方體的8個頂點都在球O的表面上,
所以球的直徑是長方體的對角線長,
即2R=$\sqrt{{1}^{2}{+(\sqrt{3})}^{2}{+2}^{2}}$=2$\sqrt{2}$,
所以R=$\sqrt{2}$;
所以球O的體積為
V=$\frac{4}{3}$π${(\sqrt{2})}^{3}$=$\frac{8\sqrt{2}π}{3}$.
故選:A.

點評 本題考查了球內(nèi)接長方體的對角線長是球直徑的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求實數(shù)λ的取值范圍,使不等式|$\frac{1-abλ}{aλ-b}$|>1對滿足|a|<1,|b|<1的一切實數(shù)a,b恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某數(shù)學(xué)學(xué)習(xí)興趣小組共5人,其中女生2人,現(xiàn)從該小組中任選3人參加數(shù)學(xué)競賽,用ξ表示這3人中女生的人數(shù),則P(ξ≤1)等于( 。
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐P-ABC的四個頂點都在球O的表面上,PA⊥平面ABC,AB⊥BC,PA=2,AB=BC=1,則球O的表面積為( 。
A.$\sqrt{6}$πB.C.24πD.2$\sqrt{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)k∈R,函數(shù)f(x)=lnx-kx.
(Ⅰ)若k=1,判斷函數(shù)y=f(x)的單調(diào)性,并求函數(shù)的極值;
(Ⅱ)若f(x)無零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在正方體ABCD-A1B1C1D1中挖去一個圓錐,得到一個幾何體M,已知圓錐頂點為正方形ABCD的中心,底面圓是正方形A1B1C1D1的內(nèi)切圓,若正方體的棱長為acm.
(1)求挖去的圓錐的側(cè)面積;
(2)求幾何體M的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)p:函數(shù)f(x)=lg(ax2$-x+\frac{1}{4}$a)的定義域為R;
q:函數(shù)f(x)=$\frac{x+a}{x-1}$ 在(1,+∞)上單調(diào)遞減.若命題p∧q為假.
求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當x$∈[\frac{1}{3},2]$時,求函數(shù)y=f(x-1)+f(x+1)的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-ax,x∈R,其中a>0.
(1)若函數(shù)f(x)在R上的最小值是-1,求實數(shù)a的值;
(2)若存在兩個不同的點(m,n),(n,m)同時在曲線f(x)上,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案